авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 5 |

Особенности загрязнения четвертичных отложений территории г. москвы тяжелыми металлами

-- [ Страница 2 ] --

К коммунально-бытовым отходам относятся бытовой мусор, канализационный осадок, или осадок городских очистных сооружений поверхностного стока. В таком крупном промышленном городе, как Москва, ежегодно образуется по 0.3 т/чел бытового мусора и канализационного осадка.

По степени концентрации и составу химических элементов бытовой мусор не уступает промышленным отходам, большей частью вывозится на свалки либо в сыром виде, либо после сжигания на специализированных заводах, либо происходит его вторичное использование после сортировки и подготовки.

Технология сжигания мусора на сегодняшний момент не так широко используется, как предполагалось на стадии ее ввода. Это связано с тем, что продукты сжигания бытового мусора содержат широкую ассоциацию химических элементов и такие элементы, как кадмий превышают свое содержание в литосфере в n*100 раз, медь и цинк - в n*10 раз. Особенно обогащены химическими элементами тонкие фракции, попадающие при сжигании бытового мусора в так называемую летучую зону. В пробах, отобранных из пыли, задержанной фильтрами мусоросжигательного завода, были обнаружены тысячекратные превышения кларка концентрации кадмия, стократные - цинка; десятикратные - меди. Очистные установки мусоросжигательного завода работают с расчетным КПД 0.90-0.95. При такой величине коэффициента полезного действия они пропускают довольно значительные абсолютные массы вещества в окружающую среду. Таким образом, коммунальная деятельность может учитываться как весьма значимый источник загрязнения атмосферы, поверхностного водотока, почв, растительных организмов и как следствие горных пород и грунтовых вод химическими элементами, возможно проникание стойких веществ и в межпластовые водоносные горизонты.

Осадок, отделенный от сточных вод городской канализации, накапливается на станциях аэрации. Он вывозится на поля в качестве эффективного удобрения, обогащенного многими химическими элементами. Но у такого направления использования осадка есть оборотная сторона. Проводимые лабораториями по контролю над составом осадка исследования, дают весьма высокие средние коэффициенты концентрации для кадмия, цинка, меди, никеля. Наличие в осадках высоких концентраций таких элементов позволяет считать их сильно загрязненными токсичными металлами.

В очистных сооружениях поверхностного стока скапливаются большие количества донных отложений, которые обозначают широкий круг возможностей по их использованию: засыпка ими оврагов, пониженных частей пойм.

Значительная часть всех отходов теплоэнергетики, образующихся при производстве энергии, связана с работой угольных и мазутных электростанций и состоит из выбросов (газы и золы уноса), твердых отходов (золошлаковые отходы) и стоков. Сжигание топлива на электростанциях является одним из основных источников загрязнения атмосферы населенных пунктов газообразными продуктами сгорания и пылью.

Природные угли содержат целый ряд химических элементов, концентрации которых меняются в широких пределах. За счет происходящего концентрирования при сжигании угля, золошлаковые отходы по сравнению с литосферой обогащена многими элементами. Средние концентрации большинства из них в золе товарных углей близки к кларковым, при их сжигании большинство элементов полностью переходит в золошлаковые продукты сгорания. При этом наблюдается тенденция преимущественного накопления ряда химических элементов в тонких частицах золы, которые не задерживаются очистными сооружениями и переносятся воздушными потоками на большие расстояния. Для примера, выбросы мазутных ТЭЦ отличаются очень высокими содержаниями никеля (6 кг/т); сточные воды угольных ТЭЦ содержат повышенные концентрации меди, цинка.

Приведенные выше данные вынудили московские теплоэнергостанции реконструировать свои мощности и перейти на «сезонное топливо»: весна-лето - осень – в качестве источника производимой энергии используется газ, зимой – газ с мазутом или углем.

На территории города имеются сельскохозяйственных угодья, которыми также не следует пренебрегать при рассмотрении источников загрязнения окружающей среды. Основными источниками загрязнения этого вида деятельности являются фосфатные удобрения и компосты из бытовых отходов, которые в качестве удобрений применяются в сельском хозяйстве и таким образом вовлекаются в искусственные антропогенные потоки миграции вещества, отличающиеся от обычных природных потоков по качественным характеристикам и степени напряженности.

В качестве средств химизации рассматриваются обычно две группы отходов-поставщиков химических элементов: бытовые и промышленные отходы, микроэлементы в минеральных удобрениях. Первые, многократно обогащенные медью, цинком, кадмием и никелем используются как удобрения (в основном, бытовой мусор и осадки очистных сооружений городской канализации, используемые после компостирования). Микроэлементы-примеси в минеральных удобрениях, в основном фосфорных, на ~ 50 % сохраняют ассоциации химических элементов фосфоритов: фтор и тяжелые металлы. Ежегодно в мире производится порядка 20 млн. тонн фосфатных удобрений, что сопровождается огромным количеством отходов, масса которых примерно в три раза больше массы полезных продуктов. В фосфатном сырье присутствует довольно широкая ассоциация элементов, в том числе медь, цинк, кадмий. Накопление токсико-химических элементов, как уже отмечалось выше, в таких жизненно важных средах, как вода, почвы, горные породы, растительные организмы и, как следствие, продукты питания, представляется с медико-гигиенических позиций крайне нежелательным.

В качестве удобрений используются продукты переработки (компосты) хозяйственно-бытовых отходов, представляющие собой бытовой мусор и осадки канализационных стоков. Они характеризуются высокой степенью концентрации химических элементов, в том числе токсичных. При этом из осадка в удобрение переходят все содержащиеся в нем химические элементы, и значительная их часть из бытового мусора. Так, компост из бытового мусора обогащен по сравнению с фоновыми почвами в десятки раз больше цинком и медью.

Осадки полей фильтрации обогащены медью, цинком, кадмием, никелем, их степень концентрации зависит от участия в составе хозяйственно-бытового канализационного стока промышленной составляющей.

Для представления уровня накопления и поступления тяжелых металлов в четвертичные отложения мы уделили внимание содержания тяжелых металлов не в подвижных средах (снеговой покров, поверхностные воды и донные осадки). Помимо этого были рассмотрены геохимические свойства меди, цинка, кадмия и никеля, а также их формы миграции.

Глава 3. Методы отбора, подготовки проб и определения тяжелых металлов (меди, цинка, кадмия, никеля) в вытяжках почв (горных пород) и пробах подземных вод

Отбор проб является одним из наиболее важных этапов в проведении анализа среды и поэтому должен быть проведен с соблюдением всех норм и правил. Отбор пробы зависит от геолого-географических условий местности, физических свойств среды опробования и многих других факторов.

Состав почв и грунтов в пределах мегаполиса подвержен значительным изменениям в пределах небольших расстояний. В связи с этим, отбор проб с поверхности производили по "усредненной сетке". При обследовании на глубину колонки отбор производили с первых 20 см от горизонта, а затем из каждого геолого-литологического слоя, но не реже чем через 1 м. Образцы почвы и грунта при транспортировке помещали в чистые полимерные мешки для предотвращения возможности их повторного загрязнения.

Подготовка проб к анализу. Образцы почв и горных пород доводили до воздушно-сухого состояния в хорошо вентилируемом помещении при комнатной температуре. Из воздушно-сухой объединенной пробы методом квартования брали пробу почвы (горной породы). Высушенные и перебранные образцы растирали в фарфоровой ступке и просеивали через сито. Из полученной пробы брали навески на анализ.

С целью пересчета результата анализа горных пород на абсолютно сухую навеску, проводили определение влажности в исследуемой пробе.

Далее проводилась химическая подготовка проб с использованием минерализации проб в аналитическом автоклаве НПВФ «Анкон-АТ-2» с использованием таких окислителей как азотная кислота и перекись водорода.

Первым этапом при подготовке пробы воды к анализу являлась гомогенизация простым перемешиванием, при наличии в ней мелких частиц проводили их отделение фильтрованием на ацетат целлюлозных фильтрах. Далее, Пробы воды подкислялись азотной кислотой и поступали на анализ с использованием атомно-абсорбционного спектрофотометра.

Определение тяжелых металлов в образцах. При определении химического состава вытяжек, приготовленных из керновых проб и проб воды применяли атомно-абсорбционный спектрофотометр с использованием атомизации подготовленной пробы в пламени «КВАНТ-2А» фирмы НПО «Кортек» в лаборатории комплексного эколого-геохимического исследования ГУП «Мосгоргеотрест». В связи с очень низкими концентрациями кадмия в отобранных образцах, мы использовали проточно-инжекционный блок БПИ-03.

После получения данных по содержанию тяжелых металлов в образцах почвы (грунта) их концентрации пересчитывались на абсолютно сухую навеску. Концентрация измеряемых элементов в пробах воды принимались же без пересчета, что является особенностью данных проб.

Весь процесс от отбора пробы с участка исследования до получения необходимой информации – концентрации элемента в пробе образца, занимает 2 - 4 дней для грунта и 1-2 дня для воды. В случае грунта увеличение времени обработки связано с состоянием образца. Влажный грунт высыхает в естественных условиях достаточно продолжительное время.

В работе приведены широко применяемые в подобных исследованиях методы подготовки проб и определения содержания тяжелых металлов (меди, цинка, кадмия, никеля) в вытяжках почв (горных пород) и подземных водах, которые полностью коррелирует с выбранными нами.

Глава 4. Содержание тяжелых металлов (меди, цинка, кадмия, никеля) в четвертичных отложениях

Четвертичные отложениям города Москвы по сравнению с почвенным покровом и насыпными грунтами имеют более стабильные значения содержания тяжелых металлов. Это связано зачастую с тем, что верхние слои (почва, насыпные грунты) аккумулируют основную часть загрязнения. Наши исследования заключались в выборе представительных площадок с соответствующими подразделениями, их исследовании и анализе полученных концентраций тяжелых металлов. Отложения подразделялись на 12 горизонтов.

Отбор керновых проб производился из геологических скважин с учетом рельефа местности, особенностей почвенного покрова, возраста и литологического состава горных пород.

Из полученной пробы нами отбирались навески для анализа, который проводился на атомно-абсорбционном спектрофотометре с использованием атомизации подготовленной пробы в пламени «КВАНТ-2А» фирмы НПО «Кортек» в лаборатории комплексного эколого-геохимического исследования ГУП «Мосгоргеотрест».

Исследования горных пород проводились по всей территории города Москвы. Для этого было выбрано 140 участков опробования, на которых в зависимости от геолого-литологическим условий было пробурено в общем 306 скважин (рис. 4.1). В результате исследования 1118 проб было проведено 4472 химических анализа на валовое содержание кадмия, меди, никеля, цинка и 1118 анализов для определения кислотно-щелочного состояния грунтов (pHKCl). Участки опробования для наглядности и точного представления о проделанной работе наносились на карту-схему, из которой видно, что они покрывают всю территорию города. Все данные, полученные на каждом из участков опробования, по каждой скважине и со всеми ее данными, сведены в общую таблицу. Объем полученных результатов, и масштабы обследования позволили вывести средние значения содержания тяжелых металлов в зависимости от возраста пород и с учетом геолого-литологических разностей (табл. 4.1., 4.2.). Помимо этого, получилось построить колонки по представленному в диссертации геологическому разрезу через такие ландшафтно-геоморфологические районы, как низкие отроги Смоленско-Московской возвышенности (Северная водораздельная равнина) и Москворецко-Окской равнине, а также показать разрез естественной границы между этими районами – долину реки Москвы.

Современные отложения времени голоцена в разрезе представлены техногенными отложениями (k-QIV), а на территории Смоленско-Московской возвышенности и в долине реки Москвы и современным аллювием (a-QIV). Состав насыпного слоя очень разнообразен. В основном, литологический состав техногенных отложений - это хаотично перемешанные глины, суглинки, супеси, пески с разнообразными включениями природного и техногенного генезиса. Вскрытая мощность, представленная в построенном разрезе, на Смоленско-Московской возвышенности колеблется от 1.6 до 4.67 м, в долине р. Москва – 2.5 м, на Москворецко-Окской равнине – от 1.0 до 1.5 м. Аллювий представлен серыми песками и суглинками. Суглинки – серовато-коричневые, пылеватые, без включений, тонкогоризонтальнослоистые. Мощность на Смоленско-Московской возвышенности достигает 2.07 м, в долине р. Москва – 7.3 м.

 1. Карта-схема г. Москвы с нанесенными участками опробования – 1 горных пород-0

Рисунок 4.1. Карта-схема г. Москвы с нанесенными участками опробования – 1 горных пород на содержание тяжелы металлов (меди, цинка, кадмия, никеля) и испытательная площадка – 2.

Таблица 4.1.

Средние содержания тяжелых металлов в горных породах четвертичных отложений и образований (рН < 5.5), мг/кг.

Горные породы Среднее содержание химического элемента
Возраст Литология медь цинк кадмий никель
K-QIV супесь 16.4 69.70 0.110 18.67
суглинок 14.7 100.83 0.198 20.143
ak-j-QIII1 песок 3.9 28.00 < 0.02 5.6
супесь 13.0 32.1 0.028 10.2
суглинок - 43.00 0.032 11.0
глина 9.4 43.00 < 0.02 12.0
pr-QII-III супесь 11.0 36.2 0.061 27.2
суглинок 11.6 42.00 0.061 15.0
глина 13.7 65.80 0.033 20.9
f-QIIms песок 7.8 48.00 0.021 13.6
суглинок 10.1 38.00 0.031 12.0
глина 14.5 53.50 0.021 15.5
g-QIIms суглинок 11.3 49.00 0.017 8.7
глина 13.3 70.00 0.090 13.8
f-QIId-m песок 13.0 66.50 0.015 20.5
супесь 15.0 56.1 < 0.02 17.4
суглинок 9.0 50.50 0.027 16.2
g-QIId супесь 15.0 31.5 0.054 16.4
суглинок 16.4 41.5 0.099 18.0


Pages:     | 1 || 3 | 4 |   ...   | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.