авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 |

Инженерно-геологическая оценка техногенеза компонентов подземного пространства при его освоении и использовании (на примере санкт-петербурга)

-- [ Страница 2 ] --

Нижнекембрийские синие глины распространены в южной части города, верхнекотлинские глины верхнего венда имеют региональное развитие. Коренные глины необходимо рассматривать как литифицированную трещиновато-блочную среду, имеющую зональное строение, при этом интенсивность поступления поллютантов в толщу этих глин меняется по глубине в зависимости от степени их дезинтеграции.

В пределах города выделяются следующие водоносные горизонты: грунтовые воды, 1ый межморенный водоносный горизонт, 2ой межморенный водоносный горизонт, ломоносовский водоносный горизонт, а также вендский водоносный комплекс.

Загрязнение грунтовых вод за счет утечек из канализационной системы отмечено на большей части исторического центра города, где фиксируются отрицательные значения окислительно-восстановительного потенциала (до -198 mv в районе Александро-Невской Лавры), что определяется развитием анаэробных условий. В грунтовых водах отмечено высокое содержание кальция (до 150 мг/дм3) и магния (до 116 мг/дм3), связанное с выщелачиванием этих элементов из подземных конструкций. Повышенное содержание хлоридов (до 240 мг/дм3), а также иона аммония свидетельствует о загрязнении грунтовых вод канализационными стоками. Наличие сульфатов (до 176 мг/дм3) определяется их поступлением с территорий захороненных свалок, а также с канализационными стоками. Повсеместно в грунтовых водах отмечается присутствие органических соединений, определяемых по величине ХПК и перманганатной окисляемости. Содержание нефтяных углеводородов не превышает 0,1 мг/дм3.

В водах верхнего межморенного водоносного горизонта в пределах Полюстровского месторождения по последним проведенным исследованиям зафиксировано повышенное содержание аммония, хлоридов и сульфатов, а также тяжелых металлов и нефтепродуктов за счет их поступления из грунтовых вод.

К числу защищенных водоносных горизонтов от загрязнения относятся нижний межморенный водоносный горизонт и вендский водоносный комплекс. Ломоносовский водоносный горизонт, развитый на юге города, является плохо защищенным в локальных зонах отсутствия водоупорной толщи нижнекембрийских глин.

В торфах и заторфованных грунтах, характерных для разреза Санкт-Петербурга, присутствует микробиота, которая поступает в подстилающие породы. Наибольшая активность микроорганизмов прослеживается в торфах со средней степенью разложения. С увеличением степени разложения органического вещества, интенсивность микробной деятельности, количество микроорганизмов и разнообразие физиологических групп уменьшается. В верхней части торфов доминируют нитрифицирующие бактерии, в средней части преобладают денитрифицирующие, ниже по разрезу в анаэробных условиях присутствуют сульфатредуцирующие, аммонифицирующие и метанобразующие, а также анаэробные целлюлозоразлагающие бактерии.

Вторым важным источником поступления микроорганизмов в подземное пространство являются утечки из систем водоотведения, жидкая фаза из свалок бытовых отходов, а также ликвидированные и действующие кладбища. Один миллилитр сточных вод содержит 107-108 клеток микроорганизмов.

Природным источником поступления микробиоты в подземное пространство города служат газогенерирующие межледниковые микулинские отложения, содержащие до 20-22% битумного органического вещества, развитые в юго-восточной и северной частях города. Микробиологические исследования этих пород выявили наличие большого количества анаэробных форм микроорганизмов, которые участвуют в генерации малорастворимых (СН4, N2) и растворимых (CO2, H2S) газов. Кроме того, источником биохимического газообразования (СН4, H2S) являются болота и литориновые отложения, техногенного – ликвидированные свалки, кладбища и водные объекты.

Еще до строительства сооружения существует необходимость изучения состояния компонентов подземного пространства с позиции их контаминации, на которое накладывается влияние сооружения с учетом технологии эксплуатации - давления, температуры, утечек различного органического и неорганического состава.

При неуправляемом техногенезе с поступлением контаминантов различного химического состава, содержащих органические компоненты биогенного и абиогенного генезиса, в толщу пород, происходит изменение окислительно-восстановительных и кислотно-щелочных условий.

  1. Активизация микробной деятельности в подземном пространстве мегаполисов при поступлении питательных и энергетических субстратов, отепляющем эффекте, дополнительном привносе микроорганизмов из различных природных и техногенных источников контаминации, а также формировании анаэробных условий оказывают негативное воздействие на песчано-глинистые отложения, которое постепенно уменьшается по мере повышения содержания глинистой фракции в грунтах и степени их литификации.

В связи с особенностями характеристик компонентов подземного пространства Санкт-Петербурга был проведен комплекс экспериментальных исследований, позволяющий установить закономерности изменения состава, состояния, физико-механических свойств песчано-глинистых отложений различного генезиса и возраста под влиянием органических соединений, отепляющего эффекта и при воздействии поступления питательных и энергетических субстратов в подземную среду, в которой присутствует микробиота.

Содержание органического вещества абиогенного генезиса менее 3% в песках разного гранулометрического состава отражается на значениях плотности, коэффициента фильтрации, характеристик прочности и деформируемости. Под влиянием увеличения содержания органических соединений абиогенного генезиса отмечено снижение плотности, рост общего значения пористости, с одной стороны, и уменьшение абсолютного размера пор, с другой, что отражается на фильтрационной способности песков, снижающейся в 2-5 раз. На зернах песка образуются тонкие пленки из коллоидной фракции органической компоненты, что приводит к появлению связности и снижению углов внутреннего трения.

По экспериментальным данным особенно активное изменение водопроницаемости и показателей сопротивления сдвигу песков отмечается при действии органической составляющей (торфа) и подачи многокомпонентного питательного субстрата (KNO3, KH2PO4, NaHPO4*12H2O, MgSO4), способствующих развитию микроорганизмов (табл. 1).Снижение коэффициента фильтрации и угла внутреннего трения песка средней крупности связано с повышением содержания коллоидных фракций и образованием биопленок на минеральных зернах, которые существенно уменьшают трение. В процессе длительного воздействия органики биогенного генезиса изменяется гранулометрический состав песков за счет роста содержания более мелкой фракции. Так, в исходном песке преобладающая фракция 0,5-0,25 мм составляла 65%, на момент завершения опыта содержание мелкой фракции 0,25-0,1 мм возросло до 57%, а среднезернистой снизилось до 43%.

В лабораторных условиях при воздействии на чистые пески торфа за один год отмечен рост микробной массы от 0 до 89 мкг/г (см. табл.1, рис. 4). Микробиологические исследования выявили развитие трех видов микромицетов – Penicillium oxysporum, Aspergillus niger, Penicillium brevicompactum (600 КОЕ на 1 грамм песка), которые принадлежат к аэробным формам микроорганизмов. Привнос нефтяных углеводородов способствовал формированию анаэробной среды, что фиксировалось по косвенным признакам: переходу цвета песка от светло-коричневого до серого. В восстановительной среде отмечалось снижение численности микромицетов и уменьшение их активности, что вызвало двукратное снижение величины микробной массы по сравнению с результатами опыта без добавок нефтепродуктов. В процессе опыта наблюдалось изменение кислотно- щелочных условий (рН снизилось от 7,5 до 5,5 за счет образования органических кислот), подтверждающееся формированием кристаллов оксалатов при продуцировании микромицетами щавелевой кислоты; кроме того, в первый месяц проведения исследований отмечалось выделение газа, состав которого не определялся.

При воздействии органики биогенного и абиогенного генезиса на выветрелые ожелезненные нижнекембрийские песчаники в бескислородной среде происходит восстановление железа до Fe2+, что вызывает полную деградацию цементационных связей за счет гидрооксида железа и одновременно диспергацию глинистых агрегатов. Через 6 месяцев было получено снижение угла внутреннего трения (с 270 до 100), сцепления (от 0,049 до 0,011 МПа), что сопровождалось ростом микробной массы в 5 раз.

Воздействие торфов на нижнекембрийские синие глины вызывает интенсивный рост микробной массы и снижение параметров их прочности: угла внутреннего трения в 1,25-1,5 раза, сцепления – на 20% (табл. 2). При воздействии природной органики на нижнекембрийские синие глины было установлено увеличение микробной массы в 3,5 раза за 6 месяцев. В течение опыта поддерживались анаэробные условия, о чем свидетельствует появление пятен гидротроилита за счет сульфатредукции железа и образования сероводорода. При поступлении нефтепродуктов (соляровое масло) микробная масса за 6 месяцев возросла с 25 мкг/г до 103 мкг/г (см. табл. 2). Еще ранее было установлено, что в глинах доминируют анаэробные бактерии, соответственно в восстановительных условиях при поступлении солярового масла численность микроорганизмов возрастает даже в литифицированных глинах.

Экспериментальными исследованиями установлено, что по мере повышения содержания глинистых фракций в грунтах при прочих равных условиях (поступление питательных субстратов с постоянным составом) возрастает величина микробной массы за счет повышения сорбционной способности песчано-глинистых пород (рис.5). Для развития микробиоты в песчано-глинистых отложениях имеет значение тип питательного субстрата. Как показали результаты экспериментальных исследований, при полном водонасыщении микробная масса увеличивается, максимальный рост биоты зафиксирован при поступлении питательного субстрата с 1% солярового масла.

На активность деятельности микроорганизмов существенное влияние оказывает температура. Все исследуемые физиологические группы микроорганизмов принадлежат к мезофилам, т.е. для них существует температурный оптимум в условиях которого отмечается рост их численности. При повышении температуры от 15-170С до 30-350С, что характерно для пород в основании ТЭЦ, в образцах на гидрослюдистых глин микробная масса увеличилась на 40%.

При воздействии на образцы супесчаного состава ультрафиолетовых волн длиной 305-315 нм за месяц микробная масса снизилась в 4 раза по сравнению с исходной (113,8 мкг/г), при условии поглощения излучения нуклеиновыми кислотами клеток, которые погибают в результате мутации [М.В. Волькенштейн, 2008 г.]. При вибрационном воздействии с частотой колебаний 1500 Гц содержание микробной массы за аналогичный период уменьшилось почти в 2 раза (от 133 до 70 мкг/г) за счет разрушения клеток и снижения активности их размножения.

На основе проведенных исследований введен коэффициент снижения сопротивления сдвигу для песков и глинистых пород в зависимости от содержания микробной массы (табл.3, рис.6). Наиболее чувствительными оказываются пески средней крупности, практически не содержащие пылеватую фракцию, которые переходят в состояние плывунов при величине микробной массы более 60 мкг/г. Все разности водонасыщенных глинистых грунтов малой и средней степени литификации в анаэробных условиях и при содержании микробной массы более 100 мкг/г следует рассматривать как пластичные среды с углами внутреннего трения менее 5-60. По мере повышения содержания глинистой фракции такое влияние снижается для величин сопротивления сдвигу грунтов.

  1. Для повышения безопасности функционирования системы сооружение многокомпонентная подземная среда необходимо вести проектирование на основе прогнозирования изменения состояния и физико-механических свойств песчано-глинистых отложений, преобразования состава подземных вод и активизации природно-техногенных процессов с использованием результатов экспериментальных исследований, которые не предусмотрены в системе инженерных изысканий.

Необходимость обеспечения длительной устойчивости – одно из основных требований, предъявляемых к зданиям и сооружениям различного назначения. По данным проф. В.М. Улицкого в Санкт-Петербурге большая часть деформаций (61%) обусловлена техногенными факторами, проявляющимися при эксплуатации сооружений различного назначения. В действующих нормативных документах отсутствуют требования к обязательному выполнению прогноза по изменению химического состава подземных вод, окислительно-восстановительных и кислотно-щелочных условий, температурного режима, активизации микробной деятельности, которые сказываются на ухудшении состояния и свойств пород в основании сооружений в процессе их строительства и эксплуатации.

Для сравнительной оценки степени загрязнения верхней части разреза четвертичных отложений в пределах территории Санкт-Петербурга построена схематическая карта интенсивности загрязнения в зависимости от концентрации источников контаминации, которая дает возможность установить тенденции изменения состояния и свойств песчано-глинистых грунтов и воспользоваться коэффициентами снижения прочности песчано-глинистых грунтов в зависимости от содержания в них микробной массы (рис. 7).

В качестве примера можно привести анализ перехода жилого здания на Двинской ул. в аварийное состояние в результате негативного преобразования песчано-супесчаных пород, которые служили несущим горизонтом для ленточных фундаментов шириной b=2,8-3,2 м, заглубленных на 2,5 м, при постоянном воздействии утечек из канализационной системы. Определение расчетного сопротивления (R) на стадии проектирования было выполнено при следующих показателях сопротивления сдвигу: с=0,015 МПа (1,5 тс/м2) и =200, =1,95-2,0 т/м3 и составило 0,27 МПа (2,7 тс/м2), при этом выполнялось условие рс<R, где рс – давление под подошвой от сооружения, равное 0,15 МПа.

Длительность воздействия канализационных стоков и подтопление фундаментов привело к преобразованию песчано-супесчаных отложений, изменились показатели сопротивления сдвигу: =60, с=0,017 МПа (1,7 тс/м2), взвешивающее воздействие подтопления привело к снижению до 1,42 т/м3. При этих параметрах R составило 0,11 МПа (11 тс/м2) и оказалось ниже, чем давление от сооружения.

При проектировании сооружений в зонах интенсивного загрязнения необходимо использование в расчетах характеристик сопротивления сдвигу, полученных в условиях трехосного сжатия по схеме НН (неконсолидированно-недренированный сдвиг) с возможностью бокового расширения образцов, что отражает поведение пород в основании сооружения. Данная схема испытаний позволяет получить минимальные углы внутреннего трения при сохранении плотности и влажности грунтов.

Кроме того, необходимо выполнение прогноза изменения не только физико-механических свойств, но и активизации природно-техногенных процессов: перехода песков в плывуны, возможность выпора грунтов из-под сооружения, биокоррозии строительных материалов.

ЗАКЛЮЧЕНИЕ.

Диссертация представляет собой законченную научно-квалификационную работу, в которой содержится решение актуальной научной задачи по инженерно-геологической оценке техногенеза компонентов подземного пространства при его освоении и использовании (на примере Санкт-Петербурга).

1. Подземное пространство Санкт-Петербурга рассматривается как компонентная среда, включающая горные породы (грунты), подземные воды, газы, микробиоту и подземные конструкции. В разрезе четвертичных отложений особое внимание уделено присутствию в верхней части разреза торфов и заторфованных грунтов. Загрязненные техногенные отложения, захороненные свалки, ликвидированные и действующие кладбища служат источником поступления органических соединений абиогенного и биогенного генезиса. Отмечается высокий уровень загрязнения грунтовых вод за счет утечек из канализационной сети и других источников контаминации. Коренные глины необходимо рассматривать как трещиновато-блочную среду, что предопределяет возможность их загрязнения на значительную глубину при утечках из различных источников.

2. Выполненные экспериментальные исследования влияния органических соединений биогенного и абиогенного генезиса позволили установить тенденцию изменения гранулометрического состава, коэффициента снижения показателей сопротивления сдвигу песков и глин различного генезиса и степени литификации. С ростом содержания глинистой фракции в грунтах влияние накопления микробной массы уменьшается. На основе проведенных лабораторных исследований установлено снижение содержания микробиоты при воздействии ультрафиолета и вибрационных нагрузок. Выявлены закономерности роста микробной массы в глинистых грунтах при повышении их температуры.

3. В условиях активного техногенеза безопасность функционирования сооружений и обеспечение их длительной устойчивости определяется учетом возможности перехода песков в плывунное состояние и трансформации глинистых грунтов в квазипластичное состояние при активизации микробной деятельности, загрязнении органическими соединениями биогенного и абиогенного генезиса, а также влиянии заболачивания и газогенерации природного и техногенного характера.

  1. Для обеспечения длительной устойчивости наземных и подземных сооружений различного назначения предложено использовать схематическую карту загрязнения и зон его влияния, в основу которой положена концентрация источников контаминации на рассматриваемой территории, а также коэффициент снижения сопротивления сдвигу в зависимости от величины микробной массы в песчано-глинистых грунтах. Рассмотрен пример перехода сооружения в аварийное состояние за счет загрязнения грунтов зоны основания канализационными стоками.

Наиболее значимые работы по теме диссертации

1. Панкратова К.В. Влияние изменения инженерно-геологических и геоэкологических условий в период строительства и эксплуатации сооружений проектируемого Алексеевского цементного завода на их устойчивость (Республика Мордовия) // Записки Горного института. Т.186. СПб, СПГГУ, 2010, с.34-38.

2. Дашко Р.Э. Техногенная трансформация основных компонентов подземного пространства мегаполисов и ее учет в геомеханических расчетах (на примере Санкт-Петербурга) / Р.Э. Дашко, А.В. Шидловская, К.В. Панкратова, А.М. Жукова // Записки Горного института. Т.190. СПб, СПГГУ, 2011, с.65-70.

3. Панкратова К.В. Повышение достоверности инженерно-геологической информации на основе исследований влияния некоторых факторов техногенного воздействия на песчано-глинистые отложения // Записки Горного института. Т.195. СПб, СПГГУ, 2012, с.49-53.

4. Дашко Р.Э. Исследование инженерно-геологических факторов для оценки динамики разрушения тоннеля на участке автодороги Санкт-Петербург – Киев / Р.Э. Дашко, К.В. Панкратова, А.А. Коробко // Записки Горного института. Т.195. СПб, СПГГУ, 2012, с.24-28.



Pages:     | 1 || 3 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.