авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 2 | 3 || 5 |

Изучение геодинамических процессовна основе моделирования геодезических и гравитационных параметров

-- [ Страница 4 ] --

Таким образом, проведенные эксперименты подтвердили возможность настройки некоторых дополнительных геодезических и гравитационных параметров (коэффициентов) моделей геодинамических процессов и объектов по критерию минимума суммы дисперсий определяемых величин.

3. Разработанные новые технологические решения и их программная реализация обеспечивают выполнение оперативной комплексной математической обработки и пространственно-временной интерпретации больших массивов геодезических и гравиметрических наблюдений. При этом достигается более наглядная и информативная, чем раньше, визуализация полей смещений и деформаций по дискретным данным о движениях пунктов, появляются новые возможности для оперативного решения задач прогноза, снижения риска и уменьшения последствий геодинамических катастроф природного и техногенного характера.

Для проверки и уточнения алгоритмов и создания элементов информационной технологии изучения геодинамических объектов и процессов по пространственно-временным рядам геодезических и гравиметрических наблюдений были разработаны программы в различных средах программирования. Моделирование геодинамических объектов, моделирование пространственно-временных рядов комплексных геодезических и гравиметрических наблюдений, их математическая обработка, статистический анализ и наглядное представление результатов вычислительных экспериментов выполнялись по авторским программам в средах программирования Delphi и Matlab. Так же использовались электронные таблицы Excel и пакеты прикладных программ (Maple, Derive, Mathcad, Mathematica, StatGraphics, Matrixer, Surfer, Elcut, Microdem и др.)

Система инженерных и научных расчетов MATLAB (матричная лаборатория) широко распространена во всем мире и доказала свою эффективность в самых различных сферах науки и техники. Ориентация на работу с массивами делает его удобным и естественным инструментом обработки экспериментальных данных, в том числе очень больших объемов.

Поэтому, для отработки алгоритмов совместной математической обработки и пространственно-временной интерпретации результатов геодезических и гравиметрических наблюдений больших объемов (раздел 4) была написана соответствующая программа, реализующая алгоритм фильтра Калмана-Бьюси в среде MATLAB (рисунок 8).

Рисунок 8 – Окна среды MATLAB для математической обработки по алгоритму фильтра Калмана-Бьюси

Достоинством созданной программы является, то, что она применима практически к любому объему измерительной информации. Это тот случай, когда вся сложность решения задачи математической обработки сводится к подготовке исходных данных.

На примере изучения локального напряженно-деформированного объекта показаны возможности компьютерной визуализации для экспертного анализа полей деформаций. Если смещения узлов получены как расчетные по вектору приложенных сил, то поля напряжений будут представлены рисунком 9. Вид этих полей, локализация максимальных и минимальных напряжений не позволяют сделать вывод о какой-либо неоднородности, аномалии в структуре исследуемого динамического объекта, например, пустоте или трещине.

Рисунок 9. Поля напряжений ГДС по расчетным значениям перемещений (слева направо - , , ).

Иначе будут изображаться поля напряжений по оценкам компонентов тензоров (рисунок 10), которые получены в результате оценивания напряженно-деформированного состояния пластины по наблюдениям в смоделированной геодезической сети. По этим изображениям экспертно определяется введенная в модель ГДС трещина, ее расположение, протяженность, то есть уточняется структура исследуемого объекта.

Рисунок 10 Поля напряжений ГДС по геодезическим наблюдениям (слева направо - , , ). Штриховой линией показана локализация трещины.

Такая визуализация параметров НДС, выполненная в результате обработки и интерпретации натурных геодезических наблюдений на реальных динамических объектах, позволит эксперту существенно уточнять структуру ГДС по сравнению с проектными аналитическими расчетами, в частности, наличие трещин и пустот.

Разработанные и представляемые в диссертации элементы технологии изучения геодинамических процессов включают некоторые процедуры анализа результатов повторного нивелирования по градиентам. Это показано на примере результатов нивелирования 1 класса по линии Кызыл – Кош-Агач (рисунок 11), выполненного Верхнеенисейским АГП в 2002-2005 годах, в обработке которых принимал участие автор диссертации.

Рисунок 11 - Линия нивелирования 1 класса Кызыл – Кош-Агач

Был выполнен графический анализ горизонтальных движений и полей деформаций земной поверхности Горного Алтая по результатам GPS-наблюдений, проводимых с 2000 года ежегодно сотрудниками Института геофизики СО РАН.

 Алтайская GPS-сеть Графический анализ данных о горизонтальных смещениях-149

Рисунок 12 - Алтайская GPS-сеть

Графический анализ данных о горизонтальных смещениях выполнялся с целью определения наличия деформационного предвестника места Чуйского землетрясения 27 сентября 2003 года (магнитуда 7.5). Эпицентр землетрясения - горная перемычка между Чуйской и Курайской впадинами (рисунок 12). Ближайший к эпицентру крупный населенный пункт - п. Кош-Агач.

На рисунке 13 изображено автоматическое (программное) разбиение GPS-полигона на конечные элементы с учетом плотности пунктов сети. На рисунке 14 дана картосхема векторов горизонтальных смещений. Интересными результатами этой визуализации являются видимое закручивание по часовой стрелке центральной части GPS-полигона и относительно большое смещение в направлении северо-восток южной части.

 Разбиение на конечные Векторы элементы смещений -150 Разбиение на конечные Векторы элементы смещений -151

Рисунок 13 - Разбиение на конечные Рисунок 14 - Векторы
элементы смещений

Стрелки на рисунке 15 отражают геометрическую интерпретацию ориентации главных осей деформаций и их величин, которые получены по значениям компонентов тензора деформации. Стрелки внутрь предоставляют судить о степени сжатия района, стрелки наружу - о растяжении. Из результатов интерпретации следует интересный вывод – имеется существенное сжатие южной части территории вдоль направления север-северо-восток.

Рисунки 16 – 18 являются визуализацией полей деформаций. На всех трех рисунках контрастом цвета четко выделяется зона на юге GPS-полигона. Особенно это видно на рисунке 18. Сопоставление этих рисунков с рисунком 12 отчетливо показывает совпадение северного угла аномальных по цвету зон с эпицентром землетрясения.

Таким образом, можно сделать вывод о том, что в GPS-наблюдениях 2000 - 2003 годов имелась информация о деформационном предвестнике Чуйского землетрясения. Это еще раз подтверждает важность геодезического метода наблюдений геодинамических процессов.

 Тензоры деформаций Деформация Деформация Рисунок-152

Рисунок 15 - Тензоры деформаций Рисунок 16 - Деформация

Рисунок 17 - Деформация Рисунок 18 - Деформация

При разработке моделей землетрясений имеет важнейшее значение исследование полей постсейсмических смещений и деформаций. В связи с этим был сделан графический анализ полей смещений и деформаций земной поверхности Горного Алтая, происшедших после землетрясения – постсейсмических.

На рисунке 19 кроме изображения исследуемого района (синий четырехугольник) показано положение нодальной плоскости (красная прерывистая линия), вдоль которой произошел разрыв. Вдоль этой линии располагаются эпицентры афтершоков. Поле горизонтальных смещений иллюстрирует рисунок 20. Изображение изменения формы и деформированной границы после землетрясения дано на рисунке 21.

Рисунок 19 - Исследуемый район Рисунок 20 - Поле горизонтальных
постсейсмических деформаций смещений

Графическая интерпретация тензоров деформаций представлена рисунком 22. Стрелки наружу – растяжение, стрелки внутрь – сжатие.

Рисунок 21 - Измененная форма и Рисунок 22 - Тензоры деформаций
деформированная граница

На рисунке 23 показано поле абсолютных значений векторов смещений . Замечаем соответствие зоны самых больших значений смещений зоне эпицентров землетрясения и афтершоков вдоль нодальной плоскости (рисунок 19). Рисунки 24 – 26 иллюстрируют поля деформаций.

Рисунок 23 - Поле величин смещений Рисунок 24 - Поле деформации xx

Рисунок 25 - Поле деформации yy Рисунок 26 - Поле деформации xy

ЗАКЛЮЧЕНИЕ

В процессе проведения диссертационных исследований получены следующие научные результаты:

  1. Реализован принцип совместной математической обработки геодезических и гравиметрических измерений с включением в состав оцениваемого вектора параметров переменных масс геодинамического объекта. При этом обеспечивается оптимальное решение задачи определения закономерностей движений, текущих и прогнозных оценок геодинамических объектов и характеристик их точности в виде ковариационных матриц. Предлагается использовать полученные в диссертации уравнения наблюдений.
  2. Разработана методика настройки по критерию оптимальности (минимуму обобщенной дисперсии оценок определяемых параметров). Она позволяет объективно определять дополнительные геодезические и гравитационные параметры (коэффициенты) модели динамики объекта, которые расширяют возможности применения геодезии и гравиметрии при изучении геодинамических процессов.
  3. Разработаны технологические решения и программное обеспечение, позволяющие выполнять оперативную комплексную математическую обработку и пространственно-временную интерпретацию больших массивов геодезических и гравиметрических наблюдений. При этом обеспечиваются более наглядная и информативная, чем раньше, визуализация полей смещений и деформаций по дискретным данным о движениях пунктов, новые возможности для оперативного решения задач прогноза, снижения риска и уменьшения последствий геодинамических катастроф природного и техногенного характера.

Таким образом, цель диссертационной работы и предусматриваемые ею задачи реализованы.

На основании полученных результатов можно сделать следующие выводы:

  • расширены возможности поиска решений обратных некорректных задач геофизики по разнородным данным.
  • разработанные методики изучения геодинамических процессов на основе моделирования меняющихся во времени геодезических и гравитационных параметров позволяет решать межотраслевые научно-технические проблемы исследований как на техногенных геодинамических полигонах в местах разработки полезных ископаемых, строительстве и эксплуатации крупных инженерных сооружений, так и в районах с повышенной природной сейсмо-тектонической опасностью (вулканы, зоны сочленения синклинальных образований и платформ и др.).
  • разработанные технологические решения позволят принимать более обоснованные управленческие решения по обеспечению устойчивого развития территорий, в том числе экологического равновесия, снижению риска и уровня последствий катастроф природного и техногенного характера, что имеет огромное социальное и экономическое значение для многих регионов России.

Проведенные диссертационные исследования позволяют обозначить перспективы дальнейшего совершенствования комплексных исследований по изучению геодинамических явлений природного и техногенного характера. В частности, требуют проведения специального изучения вопросы включения в этап совместной математической обработки геодезических и геофизических наблюдений различного пространственно-временного масштаба. Их реализация потребует, по-видимому, выявление возможности автоматизированной идентификации структуры геодинамических объектов, с учетом их прочностных, физических и механических характеристик для принятия решений по управлению геодинамической ситуацией. Математическая обработка и интерпретация результатов должна вестись в реальном времени с автоматической регистрацией развивающихся деформаций и связанных с ними изменений геофизических полей и пространственного положения опорных реперов. По-видимому, потребуется расширить класс математических моделей, описывающих структуру, меняющиеся гравитационное поле и напряженно-деформированное состояние геодинамических объектов.

По теме диссертации опубликовано 46 работ, в том числе следующие, раскрывающие ее основное содержание:

Публикации в центральных изданиях, включенных в перечень периодических изданий ВАК РФ

1 Мазуров, Б.Т. Математическое обеспечение идентификации движений и напряженно-деформированного состояния сооружений и объектов инженерной геодинамики по геодезическим наблюдениям / А.А. Крамаренко, Б.Т. Мазуров, В.К. Панкрушин // Изв. вузов. Геодезия и аэрофотосъемка. – 2005. № 5. – С. 3 – 13.

2 Мазуров, Б.Т. Вычислительный эксперимент идентификации движений и напряженно-деформированного состояния сооружений и объектов инженерной геодинамики по геодезическим наблюдениям / А.А. Крамаренко, Б.Т. Мазуров, В.К. Панкрушин // Изв. вузов. Геодезия и аэрофотосъемка. – 2005. - №6. – С. 3 – 14.

3 Мазуров, Б.Т. Анализ вертикальных движений по результатам нивелирования линии Кызыл - Кош-Агач / Б.Т. Мазуров, С.С. Титов // Геодезия и картография. - 2006. - №4. - С. 53 - 57.

4 Мазуров, Б.Т. Совместная математическая обработка разнородных комплексных геодезических и геофизических наблюдений за движениями земной поверхности и изменениями аномальных масс / Б.Т. Мазуров // Изв. вузов. Горный журнал. – 2006. - № 4. - С. 99 – 104.

5 Мазуров, Б.Т. Модель вертикальных движений земной поверхности и изменений гравитационного поля в районе действующего вулкана / Б.Т. Мазуров // Изв. вузов. Геодезия и аэрофотосъемка. - 2007. - № 2. - С. 97 - 106.

6 Мазуров, Б.Т. Модель системы наблюдений за вертикальными движениями земной поверхности и изменениями гравитационного поля в районе действующего вулкана / Б.Т. Мазуров // Изв. вузов. Геодезия и аэрофотосъемка. - 2007. - № 3.

7 Мазуров, Б.Т. Совместная математическая обработка и интерпретация нивелирных и гравиметрических наблюдений за вертикальными движениями земной поверхности и изменениями гравитационного поля в районе действующего вулкана / Б.Т. Мазуров // Изв. вузов. Геодезия и аэрофотосъемка. - 2007. - № 4.

8 Мазуров, Б.Т. Поля деформаций Горного Алтая перед Чуйским землетрясением. / Б.Т. Мазуров // Геодезия и картография. – 2007. - № 3. - С. 48 – 50.

9 Мазуров Б.Т. Компьютерная визуализация полей постсейсмических смещений и деформаций. / Б.Т. Мазуров // Геодезия и картография. – 2007. - № 4. - С. 51 – 53.

Монография

10 Идентификация движений и напряженно-деформированного состояния самоорганизующихся геодинамических систем по комплексным геодезическим и геофизическим наблюдениям: монография / В.А. Середович, В.К. Панкрушин, Ю.И. Кузнецов, Б.Т. Мазуров, В.Ф. Ловягин; под общ. ред. В.К. Панкрушина; СГГА. - Новосибирск, 2004. – 356 с.

Публикации по итогам международных конференций под эгидой международного союза геодезистов (FIG) (на английском языке):

11 Boris T. Mazurov, Vladimir A. Seredovich, Venyamin K. Pankrushin, Mathematical Modeling and Identification of the Stressed-deformed State of Geodynamic Systems by Spatio-temporal Series of Combined Geodetic and Geophysical Observations in the Light of Prediction of Natural and Technogenic Catastrophes, FIG Working Week 2004, Athens, Greece, May 22-27, 2004.

12 Mazurov B.T., Pankrushin V.K. Models Parameter Adaptation of Geodynamic Objects and Observation Systems with a Kalman-Bucy Filter. Fifth International Symposium "Turkish-German Joint Geodetic Days' Berlin, Germany, March 29-31, 2006. С.62 - 66.

Публикации в других изданиях

13 Мазуров, Б.Т. Визуализация результатов идентификации напряженно-деформированного состояния геодинамических систем / Б.Т. Мазуров // Сб. материалов конф. «Фотограмметрические технологии в XXI веке». - - Новосибирск: СГГА, 2003. - С. 47-52.

14 Мазуров, Б.Т. Идентификация напряженно-деформированного состояния геодинамических систем на основе комплексных геодезических и геофизических наблюдений / Б.Т. Мазуров, В.К. Панкрушин, В.А. Середович // Геодинамика и напряженное состояние недр Земли. Тр. междунар. конф. - Новосибирск: Ин-т горн. дела СО РАН, 2004. - С. 175 - 183.



Pages:     | 1 |   ...   | 2 | 3 || 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.