авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 ||

Исследование термохалинной структурыи биопродуктивности вод канарского апвеллингас использованием геоинформационных технологий

-- [ Страница 2 ] --

Рассчитаны повторяемости среднемесячных положений градиентных зон в полях температуры поверхности океана. Результаты расчетов характеризуют интенсивность апвеллинга и его повторяемость, а также позволяют определить центры выхода холодных вод на поверхность. Для определения сезонности выполнен кластерный анализ индекса апвеллинга, представляющий собой разность ТПО в прибрежной и мористой части района. Так как температура апвеллинговых вод слабо подвержена сезонным колебаниям (Сирота, 2003), то значение градиента в холодное время года может не давать четкой картины о положении центров апвеллинга. Для каждого подрайона формируется своя степень повторяемости градиента, так как они имеют различные амплитуды колебания ТПО.

По результатам океанографических съемок определены верхняя и нижняя границы апвеллингового потока для каждого сезона. Сравнение положений нижней границы за каждый сезон с особенностями рельефа позволило сделать вывод о том, что нижняя граница апвеллингового потока по всей своей протяженности повторяет формы шельфа и материкового склона, располагаясь на расстоянии 50-150 м от дна. Верхняя граница в свою очередь подвержена влиянию особенностей шельфа, в основном это формы рельефа, препятствующие движению апвеллинговых потоков. Средний объем апвеллинговых вод в летний сезон 1994-2005 гг. составляет примерно 81,3 тыс.км3, в зимний – примерно 147,6 тыс.км.3

Анализ геоморфологических особенностей шельфовой зоны и материкового склона в районе Марокко и Мавритании, позволил выделить особенности влияния подводного рельефа и приземного ветра на формирование основных районов апвеллинга и их внутригодовой изменчивости.

На основе морфологического анализа форм рельефа построена схема направления 16 основных потоков на шельфе Северо-Западной Африки, которые и формируют главные направления, определяющие особенности поднятия глубинных вод на поверхность. Что позволяет судить об основных путях продвижения апвеллинговых вод по материковому склону. Основные пути потоков вдоль материкового склона рассчитаны по материалам атласа GEBCO (General bathymetric chart of the ocean) (IOC, IHO, BODC, 2003). Для выделения самих потоков и расчета их интенсивности использовался метод пространственного ГИС-анализа (Greenlee, 1987; Tarboton et. al., 1991; Jenson et. al., 1988).

В районе Канарского апвеллинга выделяется 7 подрайонов отличающихся по ширине потока, длине преодолеваемого пути, скорости подъема, которые совпадают по своему разделению с постоянными очагами апвеллинга, рассматриваемыми в предыдущем разделе.

Использовав метод Джонсона (Jhonsan, 1985), проведено моделирование повторяемости формирования центров апвеллинга на поверхности (с добавлением дополнительных условий: скорость и направление приземного ветра, морфологические особенности шельфа и материкового склона, характеристики геострофических течений). В результате расчетов по модифицированной модели выделены районы формирования апвеллинговых вод на материковом склоне. Также учтены факторы, влияющие на дальнейшее продвижение апвеллинговых потоков на шельф: формы шельфа, подповерхностные течения и потоки, обусловленные особенностями материкового склона. При расчетах не учитываются особенности мезо-масштабные формы рельефа и близость островов, что может увеличить погрешность при расчете формирования апвеллингового потока. Все расчеты выполнялись с пространственным осреднением 1° х 1°.

По материалам съемок, выполненных в 1994-2005 гг., рассчитаны положения верхней и нижней границы апвеллинговых вод путем выделения вдоль склоновых потоков по разрезам. Полученные результаты позволили определить верхние и нижние границы апвеллингового потока, а также средние значения гидрохимических характеристик апвеллинговых вод. Описаны особенности распределений гидрохимических характеристик апвеллингового потока и степень их влияния на формирование гидрохимической структуры изучаемого района.

При более детальном изучении гидрохимических характеристик установлено, что верхняя граница фронта между центральными водными массами серенного и южного происхождения отклоняется на север в летне-осенний период, так как происходит значительное ослабление преобладающих в этом подрайоне ветров и изменение их направления с северного на северо-западное, а в некоторые годы и на западное. В результате усиливается Канарское компенсационное противотечение, за счет чего происходит значительное увеличение доли ЮАЦВ в апвеллинговых водах (до 91% в самой южной точке у м. Зеленый при среднем значений 60%).

Вследствие компенсационного противотечения подповерхностная граница между центральными водными массами продвигается на север почти до 24°с.ш. при своем среднем положении в районе 21°с.ш. По результатам анализа форм трехмерного фронта, наблюдавшихся за период с декабря по январь, выявлено активное воздействие компенсационного противотечения, имеющего максимальное значение в тот же период. Именно в этот период значительно усиливается поверхностная ветвь прибрежной части Канарского течения, чему способствует благоприятное направление ветра, приводящая к усилению компенсационного противотечения. Согласно Tomczak (1973), Huges and Barton (1974), этот поток проникает на север до 26°с.ш.

Внутригодовая изменчивость пространственного распределения рыбных скоплений оценена на основании данных по тралово-акустическим съемкам (Рисунок 2), проведенным в различные сезоны в период с 1994 по 2005 г. С использованием метода зональных гистограмм получены среднегодовые диапазоны гидрологических и гидрохимических характеристик в районах обитания основных промысловых видов. Проведенные анализ позволил выделить определенные параметры, оказывающие наибольшее воздействие на поведение и миграции массовых пелагических видов рыб. В частности, основной фактор, оказывающий влияние на распределение круглой сардинеллы это фронтальная зона между центральными водными массами, а также температура апвеллинговых вод от 17.5° С до 19° С, у европейской сардины это диапазон температур в среднем от 16° С до 18° С и солености от 35.55‰ до 36.4‰.

  Распределение концентрации хлорофилла «а» и наиболее плотных скоплений-2

Рисунок 2 – Распределение концентрации хлорофилла «а» и наиболее плотных скоплений западноафриканской ставриды в районе Канарского апвеллинга (по результатам тралово-акустической съемки, июнь – август 2004 г).

Прогнозирование районов скоплений промысловых объектов на основании данных дистанционного зондирования произведено с использованием методов пространственного анализа, разработанного на примере метода естественного моделирования и адаптированного для ГИС. Принцип работы данного метода был ранее опубликован (Huettmann, Diamond, 2001), что позволило получить дополнительные результаты, такие как гидрологические и гидрохимические характеристики наиболее благоприятных районов обитания для промысловых видов, необходимые для дальнейшего моделирования районов скопления промысловых объектов.

В четвертой главе рассматривается межгодовая динамика процессов апвеллинга их влияние на биомассу, и распределение пелагических видов рыб.

В качестве основного параметра, использовались величины объема глубинных вод в районе шельфа и материкового склона, полученные в результате обработки гидрологических съемок исследуемого района, проведенных в период с 1994 по 2005 г.

Рисунок 3 - Годовая динамика объема апвеллинговой водной массы в районе Марокко и Мавритании по результатам гидрологических съемок «АтлантНИРО» 1994 – 2005 гг.

В результате удалось выделить аномальные годы с максимальными и минимальными объемами апвеллинговых вод. Среднее значение объема составляет: для летнего сезона - 81,4 тыс.км3, для зимы - 147,6 тыс.км3. При анализе расчетных данных, полученных новым методом, и материалов, рассчитанных по методике индекса апвеллинга, наблюдаются некоторые различия, получаемые из-за принципиально разных методов расчета.

С использованием данных по широтным и меридиональным переносам в атмосфере за период с 1968 по 2001 г. были получены скорости и направления ветра для каждого месяца. По этим материалам рассчитаны преобладающие направления переноса, по которым впоследствии получены аномалии скоростей ветра, выделены следующие периоды:

  • 1970 – 1977 гг. наблюдается значительное преобладание положительных аномалий, занимающих практически всю площадь в пределах шельфовой зоны;
  • 1979 – 1985 гг. и 1990 – 1993 гг. преобладают скорости близкие к норме, имея максимальные площади распространения;
  • 1993 – 2001 гг. имеют преобладающие по площади отрицательные аномалии скоростей ветра.

Район с 11° с.ш. по 20° с.ш., в течение всех рассматриваемых лет характеризуется преобладанием отрицательных аномалий скорости ветра, район 25° - 35° с.ш. положительными аномалиями в зимний сезон и отрицательными в летний сезон.

В течение всего периода наблюдался убывающий тренд положительных аномалий. Сопоставив данные результаты со сглаженными значениями аномалий температуры поверхности (АТПО) для периода с 1950 по 2003 г., получили зависимость между температурой воды на поверхности и скоростью преобладающих направлений ветра.

Основные результаты работы:

1. С использованием методов пространственного и геостатистического анализа выделены 7 подрайонов материкового склона и шельфовой зоны района ЦВА, отличающихся по общему направлению, крутизне склонов, наличию разломов и их протяженности. Определено, что каждый из участков оказывает непосредственное влияние на формирование постоянных и сезонных центров апвеллинга. Центры выхода апвеллинговых вод классифицированы на два вида: 1) с температурой 15-18° С, соленостью 36.10-36.65‰, кислородом 4-6 мл/л., фосфатами 0.1-0.7 мкг.ат/л.; 2) с температурой около 20° С, соленостью 35,60-36,0‰, кислородом 0,1-3,3 мл/л., фосфатами 0,9-1,7 мкг.ат/л. Получены характеристики сезонного хода апвеллинга, объем потока летом 81,4 тыс.км3 и зимой 147,6 тыс.км3, глубина залегания центральной части апвеллингового потока в пределах от 30 до 300 м.

2. Анализ количественных оценок наиболее деятельной части апвеллингового потока полученного при помощи методов объемного ГИС анализа позволяет утверждать, что глубина его залегания располагается в пределах от 30 до 300 м, что совпадает с глубинным диапазоном центральных водных масс. Следовательно, постоянные центы апвеллинга, сформированные в районе каждой из этих водных масс, должны обладать определенными гидрологическими и гидрохимическими характеристиками, что подтверждается результатами натурных наблюдений. Значительно отличаются постоянные центры апвеллинга в районе 20-21° с.ш., где располагается фронтальная зона между северной и южной центральными водными массами. Однако в экспедиционных материалах наблюдается незначительное отклонение характеристик апвелленговых вод, чему способствуют как морфологические особенности материкового склона, шельфа северо-западного побережья Африки, так и преобладающие направление пассатного переноса.

3. В рамках разработанной ГИС построена модель расчета повторяемости ветрового апвеллинга на шельфе Марокко и Мавритании, с помощью которой возможно определение значения повторяемости выхода глубинных вод на поверхность только по данным дистанционного зондирования. Внутригодовые характеристики повторяемости апвеллинга были сопоставлены с фактическими результатами средне годового термического индекса, в результате чего получены коэффициенты корреляции между этими значениями около 0.8, что указывает на высокую степень влияния учитываемых в модели характеристик (рельеф, преобладающее направление и сила ветра, геострофические течения) на формирование центров действия апвеллинга.

4. Выделены особенности сезонной и межгодовой изменчивости фронтальной зоны между центральными водными массами. Верхняя граница фронта сильно отклоняется на север в летне-осенний период, так как происходит значительное ослабление преобладающих в этом подрайоне ветров, при этом практически исчезает прибрежная ветвь Канарского течения и значительно усиливается подповерхностное противотечение.

5. Описаны особенности распределения массовых пелагических рыб в зависимости от термохалинной структуры и гидрохимических характеристик вод в сезонном и межгодовом плане. На расположение областей концентрации основных промысловых объектов района ЦВА в большинстве случаев оказывает влияние как положение фронтальной зоны, так и соотношение каждой из центральных водных масс. Наиболее плотные скопления тяготеют к периферии верхней и нижней границе апвеллингового потока в зависимости от особенностей поведения того или иного промыслового объекта.

Полученные зависимости могут быть использованы для прогнозирования биомассы и зон максимальных концентраций промысловых видов рыб района Канарского апвеллинга с использованием только ретроспективных материалов и оперативно получаемых данных спутникового зондирования поверхности океана.

Список публикаций по теме диссертации

  1. Глеза, И.Л. Использование геоинформационных систем для анализа промыслово-океанологических условий в районе Центрально-Восточной Атлантики. / И.Л. Глеза //Тез. докл. Всерос. конф. молодых ученых, посвященной 140-летию со дня рождения Н. М. Книповича, Мурманск 23-25 апр. 2002 г. – 2002. – С.54 – 56.
  2. Межгодовые изменения пелагической экосистемы ЦВА под влиянием океанологических факторов в 1994-2001 годах. / П.П. Чернышков П.А. Букатин, А.М. Сирота, И.Л. Глеза //Тез. докл. XII Конференции по промысловой океанологии, Светлогорск 2002 г. 9 – 14 сен. Калининград. – 2002. – С. 261-262.
  3. Chernyshkov, P.P. Comparison of the pelagic ecosystems interannual variability in the Canary and Benguela upwelling systems. / P.P. Chernyshkov, A.M. Sirota, G.N. Andrianov, I.L. Gleza //OCEANS: Ocean Biogeochemistry and Ecosystems Analysis – Inter. Op. Sci. Conf., January 2003, Paris, France – 2003. – p. 135-139.
  4. Глеза, И.Л. Применение ГИС для анализа и прогноза промысловых условий в Центрально-Восточной Атлантике / И.Л. Глеза //Тез. докл. IV Всерос. науч. конф. «Физические проблемы экологии (экологическая физика)» Москва, 21-24 июня, 2003 г. М., – 2003. – С. 61-63.
  5. Глеза, И.Л. Сезонные и межгодовые изменения океанографических характеристик района Марокко и Мавритании в период с 1994 по 2001 год. / И.Л. Глеза //Ученые записки Русского географического общества – Калининград, 2003. – Т.2. – с. 34.
  6. Глеза, И.Л. Опыт внедрения ГИС в промыслово-океанографические исследования / И.Л. Глеза //Промыслово-биологические исследования АтлантНИРО в 2002-2003 годах. Том 2. Условия среды и промысловое использование биоресурсов. сб. науч. тр. / АтлантНИРО – Калининград. – 2004г. – С. 45- 48.
  7. Глеза, И.Л. Применение ГИС для анализа и прогноза промысловых условий в центрально восточной Атлантике / И.Л. Глеза //Тез. Док. IX Всерос. конф. по проблемам рыбопромыслового прогнозирования. Мурманск, 10-14 апреля, 2004г. – 2004. – С. 54.
  8. Глеза, И.Л. Использование геоинформационных технологий для анализа океанологических условий и особенностей распределения пелагических видов рыб в районе ЦВА / И.Л. Глеза //Тез. докл. Научно-практ. конф. Москва 24-25 ноября 2004 г., – М., – 2004. – С. 75-76.
  9. Глеза, И.Л. Диагноз и прогноз состояния промысловых биоресурсов в океанических районах на основе геоинформационных технологий / И.Л. Глеза, П.П. Чернышков //Рыбное хозяйство. – 2006. – №6 – с. 51-55 (Работа опубликована в издании, входящем в перечень ВАК).


Pages:     | 1 ||
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.