авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 |

Образование водогазонефтяных эмульсий в механизированных скважинах и их разделение в поверхностных аппаратах

-- [ Страница 1 ] --

УДК 622.276

На правах рукописи

АЛЬМУХАМЕТОВА ЭЛЬВИРА МАРАТОВНА

ОБРАЗОВАНИЕ ВОДОГАЗОНЕФТЯНЫХ ЭМУЛЬСИЙ

В МЕХАНИЗИРОВАННЫХ СКВАЖИНАХ

И ИХ РАЗДЕЛЕНИЕ В ПОВЕРХНОСТНЫХ АППАРАТАХ

Специальность 25.00.17 – Разработка и эксплуатация

нефтяных и газовых месторождений

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата технических наук

Уфа 2010

Работа выполнена в Государственном унитарном предприятии «Институт проблем транспорта энергоресурсов» (ГУП «ИПТЭР»)

Научный руководитель Официальные оппоненты: Ведущая организация – кандидат технических наук Сагитов Дамир Камбирович – доктор технических наук Голубев Михаил Викторович – кандидат технических наук Шаисламов Шамиль Гатуфович – Государственное автономное научное учреждение «Институт нефтегазовых технологий и новых материалов» АН РБ (г. Уфа)

Защита диссертации состоится 19 августа 2010 г. в 1200 часов на заседании диссертационного совета Д 222.002.01 при ГУП «Институт проблем транспорта энергоресурсов» по адресу: 450055, г. Уфа, пр. Октября, 144/3.

С диссертацией можно ознакомиться в библиотеке ГУП «ИПТЭР».

Автореферат разослан 19 июля 2010 г.

Ученый секретарь

диссертационного совета

доктор технических наук Л.П. Худякова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Существующие методы изучения движения и структуры потока в скважинах с электроцентробежными насосами (ЭЦН) в системе «забой – насос – устье» носят больше опытно-экспериментальный и эмпирический характер. Поэтому отсутствие универсальных методик, учитывающих все возможные режимы работы скважин, не позволяет использовать существующие методики как основу для разработки мероприятий, повышающих эффективность эксплуатации скважин с ЭЦН. Кроме того, данные методики не всегда пригодны для определения оптимальных режимов работы и выявления необходимости проведения различного рода геолого-технических мероприятий (ГТМ) по скважинам, так как они недостаточно совершенны. Повышение же рентабельности эксплуатации скважин неразрывно связано с возможностью целенаправленно изменять свойства и структуру потока при различных физических свойствах флюидов и режимах работы скважин с ЭЦН с образованием тонкодисперсных эмульсий. В этом отношении исследование характера процессов, происходящих в призабойной зоне и стволе скважины, путем создания обобщенной математической модели с анализом влияния различных возмущающих воздействий на устойчивость эмульсий и оценкой снижения их устойчивости и отделения водной фазы в поверхностных аппаратах является актуальной задачей, стоящей перед нефтяной промышленностью сегодня.

Цель работы – повышение эффективности эксплуатации скважин с ЭЦН путем создания обобщенной математической модели для уточнения механизма движения потока и образования водонефтяных смесей от «забоя до устья», определения устойчивости и отделения водной фазы из эмульсии в поверхностных аппаратах.

Для решения поставленной цели были сформулированы следующие основные задачи:

  1. Создание математической модели исследования свойств многофазного потока в стволе вертикальной скважины, оборудованной погружным электроцентробежным насосом.
  2. Исследование движения двухфазной и трехфазной жидкостей в стволе скважин при ламинарном и турбулентном режимах течения.
  3. Оценка вязкостных характеристик водонефтяных эмульсий на выкиде насоса и разработка рекомендаций по снижению устойчивости водонефтяных эмульсий и отделению воды в поверхностных аппаратах.
  4. Теоретическое исследование изменения концентрации деэмульгатора в зависимости от изменения в продукции скважин доли дисперсной фазы (воды) и дисперсионной среды (нефти) для оптимизации расхода и определения точки ввода деэмульгатора в поток.

Методы решения поставленных задач. Поставленные в диссертационной работе задачи решались путем теоретических исследований механизма образования структуры потока пластовых жидкостей в системе «забой – насос – устье», анализа и обобщения промыслового материала по эксплуатации скважин с электроцентробежными насосами, глубинных измерений давления на забойном участке и в стволе скважин, исследования устойчивости нефтяных эмульсий на устье скважин и в трубопроводах системы сбора и отделения воды.

Научная новизна

1. Создана математическая модель для изучения структуры многофазного потока в призабойной зоне и стволе скважин с электроцентробежными насосами. По результатам численного моделирования установлено, что при турбулентном режиме течения потока в призабойной зоне максимальное содержание нефти сосредоточено в области перфорационных отверстий, выше которой образуется устойчивая водонефтяная смесь, а ниже (зумпф) скапливается водная фаза.

2. Для случая маловязкой нефти выявлено проскальзывание водной фазы за счет увеличения относительных скоростей, а для вязкой нефти среднее значение содержания воды выравнивается, приближаясь к средней плотности фаз, причем образование водонефтяной эмульсии наблюдается уже в области перфорационной зоны, а динамическая структура потока устанавливается на некотором фиксированном расстоянии от перфорационных отверстий (около 30 … 40 м для задач, рассмотренных автором).

3. Численными исследованиями установлено, что несимметричное течение фаз устанавливается путем преимущественного распределения нефтяной фазы у стенок трубы. Чем выше турбулентность потока, тем выше содержание нефтяной фазы в пристенной области.

4. Отмечено увеличение дисперсности и устойчивости водонефтяной смеси на выкиде погружного насоса, снижение устойчивости которой отмечается в насосно-компрессорных трубах за счет ввода деэмульгатора, увеличения относительных скоростей фаз и выделения попутного газа, причем разделение на фазы в поверхностных разделительных аппаратах тем интенсивнее, чем раньше используется эффект путевой деэмульсации продукции скважин.

На защиту выносятся следующие положения:

  1. Методика изучения изменения свойств многофазного потока в призабойной зоне скважин с ЭЦН и насосно-компрессорных трубах.
  2. Методика исследования процесса массопереноса в стволе вертикальной скважины.
  3. Механизм движения трехфазной смеси с выкида ЭЦН до устья скважины с неразрушенной структурой эмульсии и разрушенной с подачей ПАВ и отделения водной фазы в промысловых аппаратах путем использования путевой деэмульсации в промысловых трубопроводах.

Практическая ценность результатов работы

  1. Разработаны технологии предупреждения образования тонкодисперсных структур водонефтяных эмульсий в скважинах с УЭЦН, основанные на изменении структуры эмульсии путем подачи ПАВ.
  2. Установлены основные виды осложнений в работе аппаратов путевого сброса воды, связанные с недостаточной разрушенностью нефтяных эмульсий в подводящих трубопроводах, при добыче, транспортировке и разделении водогазонефтяных эмульсий повышенной вязкости на отдельные фазы.

Достоверность результатов проведенных исследований

Обоснованность научных положений, выводов и рекомендаций достигалась путем применения современных методов математического моделирования, численного исследования на ПЭВМ и сопоставления теоретических выводов с результатами фактических исследований на скважинах.

Апробация работы

Основные положения и результаты работы докладывались и обсуждались на:

- 34-ой научно-технической конференции молодых ученых, аспирантов и студентов (г. Уфа, 2007 г.);

- 35-ой научно-технической конференции молодых ученых, аспирантов и студентов (г. Уфа, 2008 г.);

- 36-ой научно-технической конференции молодых ученых, аспирантов и студентов (г. Уфа, 2009 г.);

- 2-ой научно-практической конференции «Проблемы нефтегазового комплекса Западной Сибири и пути повышения его эффективности» (г. Когалым, 2006 г.).

Публикации

Основные результаты диссертационной работы опубликованы в 12 научных трудах, в том числе 3 в изданиях, рекомендованных ВАК Минобразования и науки РФ.

Структура и объем работы

Диссертационная работа состоит из введения, четырех глав, основных выводов и рекомендаций, библиографического списка использованной литературы, включающего 96 наименований. Работа изложена на 134 страницах машинописного текста, содержит 10 таблиц и 66 рисунков.

Краткое содержание работы

Во введении обоснована актуальность проблемы, сформулированы цель и основные задачи работы, обозначены основные положения, выносимые на защиту, показаны научная новизна и практическая ценность результатов работы.

В первой главе изложены состояние изученности проблемы и постановка задачи исследования. Показано, что проблема считается достаточно изученной. Она широка освещена в работах А.А. Богданова, П.Д. Ляпкова, В.Р. Розанцева, Н.Н. Репина, И.М. Муравьева, И.Т. Мищенко, В.П. Игревского, З.А. Ростэ, Л.С. Каплана, Г.З. Ибрагимова, Н.И. Хисамутдинова и многих других. Исследования с пробами необводненной нефти с ЭЦН, проведенные П.Д. Ляпковым, показали, что при изменении газосодержания от 0,2 до 1,0 производительность насоса резко снижалась вплоть до срыва подачи. Впоследствии П.Д. Ляпковым было изучено влияние вязкости нефти и водонефтяной смеси на производительность насоса.

Указанные явления наиболее полно были изучены профессором
И.Т. Мищенко, который показал, что на технико-экономические показатели эксплуатации скважин с ЭЦН влияют вязкостные характеристики и состав откачиваемой нефти, пластовой воды и попутного газа. От забоя до устья скважины с ЭЦН идет образование эмульсионных структур на первом этапе в системе «забой – насос», на втором – собственно «насос» и на третьем – в подъемных трубах.

Согласно такой схеме, при подъеме насосами пластовой многофазной продукции также идет выделение газа в скважине на отметках, где давление по стволу ниже давления насыщения, с появлением относительных скоростей ввиду различия плотностей извлекаемой продукции.

Показано, что напор и подача насосных установок в связи с эмульгированием нефти снижаются.

Наблюдаемый во всех скважинах по стволу скачок плотности жидкости свидетельствует о существовании относительной скорости нефтяной фазы в водном столбе на забойном участке. Присутствие водной фазы в продукции скважин достаточно резко изменяет рабочие характеристики насоса в сравнении с работой на однородной жидкости.

Обобщение опыта эксплуатации скважин с ЭЦН на месторождениях Башкирии и Татарии показало, что на характеристику насоса в условиях скважин значительное влияние оказывают вид откачиваемой жидкости, соотношение фаз, вязкость фаз, газовая фаза. Несмотря на такие различия, исследователи по-разному объясняют причины изменения характеристик насосов, а также различные взгляды и толкования в отношении плотности жидкости в призабойной зоне пласта, наличия относительных скоростей фаз для двухфазной системы. Однако однозначного взгляда на механизм движения потока в ламинарном и турбулентном режимах движения фаз нет. Поэтому представляется необходимым уточнить механизм образования и движения водонефтяных смесей от «забоя до устья» и исследовать влияние водонефтяных эмульсий на характеристику насоса с целью повышения эффективности эксплуатации скважин с ЭЦН путем создания усовершенствованной математической модели.

Во второй главе представлены результаты исследования структуры потока пластовых жидкостей на забойном участке ствола вертикальной скважины.

С целью определения влияния перфорационных отверстий на установление режима течения двухфазной жидкости в вертикальной скважине рассмотрен ряд модельных задач с различными условиями, описывающими возмущающие воздействия.

Отмечено, что существующие методики гидродинамических расчетов потоков флюидов в стволах скважин разрабатывались на основе экспериментальных исследований с ярко выраженным эмпирическим характером.

Отсутствие универсальных методик, учитывающих все возможные режимы работы скважин, не позволяет использовать существующие методики как основу для повышения эффективности эксплуатации существующих скважин. Кроме того, данные методики не пригодны для определения оптимальных режимов работы и необходимости проведения различного рода ГТМ по скважинам. Повышение же рентабельности эксплуатации скважин неразрывно связано с возможностью целенаправленно изменять свойства и структуру потока при различных физических свойствах флюидов, режимах работы скважин с ЭЦН с образованием тонкодисперсных эмульсий. В этом отношении исследование характера процессов, происходящих в стволе скважины, с анализом влияния различных возмущающих воздействий на устойчивость эмульсий и отделение водной фазы в поверхностных аппаратах является актуальной задачей.

Основу математической модели составляют уравнения концентраций (уравнение конвективно-диффузионного переноса), скорости (уравнение Навье-Стокса) и турбулентности (модель k- турбулентности – уравнения турбулентного переноса).

Уравнение Навье-Стокса:

, (1)

где источник ; – скорость потока; – время;
P – давление в потоке; – коэффициент динамической вязкости; t – коэффициент турбулентной динамической вязкости (не зависит от свойств жидкости, а зависит от режима течения, то есть для заданного режима изменяется от точки k к точке ); – плотность потока; R – сила изотропного и (или) анизотропного фильтра сопротивления (в решаемых задачах равна нулю); g – ускорение свободного падения; hyd – гидростатическая плотность. Во вращающейся системе координат силы вращения (Кориолиса и центробежная) имеют вид: , где – вектор угловой скорости вращения.

Уравнение энергии:

, (2)

где h – энтальпия смеси; Cp – удельная теплоемкость смеси; – коэффициент теплопроводности; Prt – турбулентное число Прандтля (использование понятия длины пути смешивания); Q – источник тепла.

Уравнение конвективного переноса:

, (3)

где – объемная концентрация (несмешиваемые компоненты).

Уравнения модели турбулентности

При рассмотрении потоков жидкости или газов k- модель является наиболее популярной моделью турбулентности. Первые усилия по ее разработке были предприняты Чоу (1945), Давыдовым (1961), Харлоу и Накаямой (1968). Центральное место в формировании модели принадлежит работам Лаундера-Джонса (1972), Лаундера-Сполдинга и Лаундера-Шармы (1972, 1974). В этих работах было сформировано понятие стандартной
k- модели, построенной в предположении о реализации полностью развитых турбулентных течений при больших турбулентных числах Рейнольдса (). В k- модели турбулентная вязкость t выражается через величины k и (турбулентную энергию и скорость диссипации турбулентной энергии) следующим образом:

, (4)

где k – турбулентная энергия [м2/с2]; – турбулентная диссипация
[м2/с3]– скорость диссипации турбулентной энергии; t – турбулентная вязкость [кг/(м · с)]– турбулентная динамическая вязкость.

В качестве обоснования выбора k- модели турбулентности нами было принято следующее. На сегодняшний момент существует множество различных моделей турбулентностей, пригодных для решения различных задач, но единой модели турбулентности, которая бы одинаково описывала реальные физические явления и моделируемые, для широкого круга задач нет. Обширный ряд моделей нашел свое применение и в пакетах гидродинамического моделирования. Математический аппарат многих пакетов включает в себя ряд подмоделей турбулентности, доступных для использования.

В работе для исследования свойств и структуры многофазного потока рассматривались вода и два типа углеводородных жидкостей (маловязкая – 1 и вязкая – 2). При моделировании производился учет силы тяжести, турбулентности, а также вязкости потока. Физические свойства модельных флюидов приведены в таблице 1.

Таблица 1 – Физические свойства модельных флюидов

Физический параметр Размер-ность Вещество № 0 (вещество с физическими свойствами воды) Вещество № 1 (вещество с физическими свойствами нефти 1) Вещество № 1 (вещество с физическими свойствами нефти 2) Вещество № 1 (вещество с физическими свойствами нефти 3)
Давление Па 101325 101325 101325 101325
Вязкость кг/(мс) 0,0010200 0,0018952 0,0067100 0,0455000
Молеку-лярный вес кг/кмоль 18,0153 196,3760 270,0000 298,0000
Плотность кг/м3 998,205 824,000 845,000 899,000
Поверх-ностное натяжение Н/м 0,0729 0,0300 0,0300 0,0300


Pages:   || 2 | 3 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.