авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 || 4 | 5 |

Научные основы методов и средств безопасной утилизации отходов производства изотактического полипропилена

-- [ Страница 3 ] --

Результаты паразитологического, микробиологического исследований в совокупности с измеренными значениями БПК и ХПК, значения которых не превышают нормативы согласно существующей на сегодня санитарно-гигиенической нормативной базе, свидетельствуют о геоэкологической безопасности данного вида отхода производства.

Также нами исследовались параметры воздействия битума нефтяного дорожного БНД 90/130, модифицированного низкоокисленным АПП на компоненты окружающей среды: миграция химических веществ в воздушную среду (выполнялось с использованием климатической камеры, в которой создавались условия, такие как насыщенность материалом, температура, влажность, скорость движения воздуха и воздухообмен, максимально приближенные к условиям эксплуатации), миграция химических веществ в водную среду и почву и токсикологическая опасность БНД/ОАПП (для получения информации о подвижности входящих в состав БНД/ОАПП химических веществ готовили вытяжки из исследуемого материала). Согласно полученным результатам композиция БНД/ОАПП относится к 4 классу опасности малоопасная (приложение 7 к СП 2.1.7.1366-03) (табл. 4).

Таблица 4.

Результаты измерений массовых концентраций химических веществ в выходящем из камеры воздухе.

Определяемое вещество Концентрация, мг/м3 ПДК, мг/м3
2 сутки 10 сутки 20 сутки
Ацетальдегид <0,005 <0,005 <0,005 0,01
Бензол <0,05 <0,05 <0,05 0,3/0,1
Диметилбензол <0,05 <0,05 <0,05 0,2
Метилбензол <0,05 <0,05 <0,05 0,6
Углеводороды предельные (С2–С10) <20 <20 <20 -
Формальдегид <0,001 <0,001 <0,001 0,035/0,003
Этилбензол <0,05 <0,05 <0,05 0,02

По результатам химического анализа рассчитали ориентировочный водно-миграционный показатель для водного (ОВМПв) и буферного (ОВМПб) экстракта (п.5.5.2. СП 2.1.7.1386-03). Значения ОВМПв и ОВМПб составили 5,9 и 23,4 единицы соответственно. По значению величины ОВМПб композиция БНД/ОАПП-Н относится к 3 классу опасности. По результатам биотестирования композиция БНД/ОАПП-Н относится к 3 классу опасности (Приказ МПР РФ от 15.06.2001 №511) (табл. 5).

Таблица 5.

Результаты химического анализа вытяжек из БНД/ОАПП-Н.

Определяемое вещество Экстрагент Концентрация, мг/м3 ПДК, мг/м3
Дистиллированная вода Буферный раствор Раствор азотной кислоты
1 2 3 4 5
Ацетальдегид н/о* н/о* н/о* 0,25
1 2 3 4 5
Формальдегид н/о* н/о* н/о* 0,1
Бензол н/о* н/о* н/о* 0,5
Метилбензол н/о* н/о* н/о* 0,5
Диметилбензол н/о* н/о* н/о* 0,05
Этилбензол н/о* н/о* н/о* 0,001
Нефтепродукты 0,22 0,58 0,14 0,05
Железо <0,01 0,39 0,50 0,1
Никель <0,001 <0,001 <0,001 0,02
Марганец <0,001 0,007 0,003 0,1
Медь <0,001 <0,001 <0,001 0,001
Свинец <0,001 <0,001 <0,001 0,006
Хром <0,001 <0,001 <0,001 0,02
Цинк 0,010 0,072 0,111 0,01

Примечание:* – вещество не обнаружено применяемыми методами исследования.

По совокупности результатов проведенных исследований битум нефтяной дорожный вязкий БНД 90/130, модифицированный окисленным атактическим полипропиленом относится к 3 классу опасности (умеренно опасный). Класс опасности установлен на основании СП 2.1.7.1386-03. По результатам экспериментальных исследований композиция БНД/ОАПП не будет оказывать прямого негативного воздействия на организм человека – миграция загрязняющих веществ из БНД/ОАПП в воздушную среду ниже допустимого уровня.

Глава седьмая посвящена изучению возможностей применения окисленного АПП (рис. 5), в частности в разделах 7.1, 7.2 раскрыты физико-химические основы получения битумно-полимерных вяжущих (БПВ) с использованием модифицированного путем термоокислительной деструкции атактического полипропилена (ОАПП). Многочисленные рецептуры улучшения свойств битумов полимерами могут служить основой для вывода – качество битума с полимерной добавкой всегда выше. В качестве модификаторов традиционно используются каучук (как природный, так и все виды синтетических каучуков, резиновая крошка), полиолефины (полиэтилен, полипропилен, их сополимеры и стереоизомеры), полиароматические полимеры (полистиролы, поливинилацетаты, поливинилхлориды). Естественно, достаточно широко применяют те типы полимеров, которые не являются дефицитными, и для которых еще недавно было уместно название – «отходы производства». Поэтому наиболее широкое распространение как модификаторы получили атактический полипропилен, дивинилстирол и различные побочные продукты полимерных производств. Уместно отметить, что наилучшей добавкой для увеличения адгезии к песку и любому другому минеральному материалу является полиэтиленполиамин, но не приемлем для использования вследствие своей дороговизны.

 Возможные пути использования ОАПП. Предлагаемые в работе БПВ готовили по-10

Рис. 5. Возможные пути использования ОАПП.

Предлагаемые в работе БПВ готовили по традиционной технологии в температурных режимах (120—140оС) приготовления горячих асфальтобетонов, отличием является введение в расплав 3,0—5,0 масс.% окисленного АПП. Рассмотренные БПВ по сравнению с известным составом имеют лучшую совместимость неорганических наполнителей (тальк, диатомит, каолин и др.) с битумами, некристаллическими полимерами пропилена, ДСТ-30, СБС-каучуками. В работе было установлено, что ОАПП в процессе приготовления композиций реагирует с полисопряженными компонентами битумов (карбены, карбоиды, графитоподобные структуры), разрушает цепи сопряжения и увеличивает срок эксплуатации кровельных материалов в 2 раза и позволяет использовать для получения БПВ высокоокисленные битумы. Предложен механизм химического взаимодействия окисленного атактического полипропилена с полисопряженными полициклическими соединениями битумов.

Введение 1-3% масс. ОАПП в состав БПВ улучшает технологичность приготовления кровельных композиций, сокращает на 30-40% время смешивания в гомогенизаторе БПВ и их композиций с наполнителями; аппретирование поверхности наполнителя ОАПП позволяет получать высоконаполненные композиции, содержащие до 40% неорганических наполнителей, либо увеличивать на 30-40% количество наполнителей в выпускаемых композициях с БПВ без ухудшения физико-механических свойств; введение до З% масс. ОАПП обеспечивает долговременную адгезионную прочность сцепления кровельных материалов с бетоном, металлической подложкой, стеклотканью; композиции с ОАПП обладают высокими антикоррозионными свойствами.

Реологические свойства являются теми свойствами битума и битумно-полимерной смеси, которые привычны при исследованиях вязкостных и неньютоновских свойств материалов, поэтому они были исследованы в работе. Энергия активации (Еа) вязкого течения окисленного АПП уменьшается с увеличением степени его окисления. Еа вязкого течения сильноокисленного АПП в два раза меньше данной величины для битума, что технологически значительно упрощает смешивание этих материалов при приготовлении композиций. БПВ, содержащие 3% АПП выделенного при получении сополимера пропилена с этиленом (40%), обладают наиболее высокими вязкостью, энергией активации вязкого течения и температурой начала размягчения, поэтому их целесообразно использовать для приготовления кровельных материалов содержащих до 30% неорганических наполнителей. Для приготовления композиций асфальтобетона такой полимер непригоден вследствие его низких адгезионных свойств, высокой вязкости, большой величины энергии активации вязкого течения при расплавлении и технологических затруднениях при приготовлении высоконаполненных композиций с содержанием наполнителя до 94% масс. При введении в композиции небольших количеств масла И-20А (до 15%) Еа вязкого течения БПВ и полимеров резко уменьшается в 3-4 раза, что облегчает дальнейшую переработку вяжущего.

Срок службы асфальтобетонных покрытий автомобильных дорог, построенных с использованием ОАПП, по результатам ежегодного мониторинга в Томской области, Сургутском районе ХМАО-Югры, увеличился в 2 раза без текущего ремонта.

В разделе 7.3. раскрыты физико-химические основы получения антикоррозионной композиции с использованием ОАПП. Разработанный состав антикоррозионной композиции, содержит окисленный АПП в количестве 10-30%мас. В работе было определено, что антикоррозионная композиция на основе пушечной смазки, модифицированная ОАПП, по сравнению с известным составом, обладает хорошими пленкообразующими и высокими защитными свойствами, имеет повышенные адгезионно-когезионные свойства (в 5-9 раз), более высокую температуроустойчивость (в 1,4-1,8 раза) и более высокую твердость (в 3-6 раз), что значительно повышает устойчивость, защитные свойства композиции в условиях эксплуатации. Композиция с окисленным АПП не является пожароопасной, нетоксична и не требует сушки для отвердения. Стоимость предлагаемой композиции значительно ниже аналогичных импортных составов. Для сравнения стоимость «Тектила» (США) или антикоррозионного состава «Раст-стоп» (Канада) порядка в 20 раз выше стоимости предлагаемой композиции.

Нанесение композиции на днище автомобиля осуществляли из расплава при 90—100 оС методом безвоздушного распыления под давлением 10—20 МПа (Нехорошев, Балахонов, Давыдов и др., 1989). Нанесенное покрытие из предлагаемой антикоррозионной композиции охлаждается до температуры окружающей среды и не требует дополнительного времени для высыхания, т.к. в композиции отсутствуют низкокипящие углеводородные растворители. Процесс приготовления и нанесения покрытия пожаро- и взрывобезопасен из-за высокой температуры вспышки композиции (250оС). ОАПП обладает хорошими антикоррозионными свойствами и имеет самый высокий коэффициент вибропоглощения среди карбоцепных полимеров, что является важным фактором в автомобиле- и кораблестроении.

Использование новых технологий в производстве и строительстве требует использования новых герметизирующих материалов, причем невысокая цена при соблюдении всех необходимых эксплуатационных характеристик имеет огромное значение, особенно для крупномасштабных производств. Термопластичные герметизирующие материалы находят широкое применение в автомобилестроении для герметизации кузовов, стекол и шасси, а также в строительстве для герметизации межпанельных швов зданий, оконных проемов при монтаже блоков стеклопакетов и их изготовлении (раздел 7.4.). Приготовление герметизирующего материала в механическом смесителе производили без принудительного нагревания через рубашку смесителя, т.к. в смеситель сначала загружали полиизобутилен (ПИБ) и каучуки и проводили механохимическую деструкцию этих полимеров до тех пор, пока температура в результате экзотермического разогрева реакционной смеси каучуков не поднимется до 120-140 оС, затем дозировали в смеситель ОАПП, который в этих условиях также деструктирует при перемешивании в течение 0,1-0,3 часа, а затем постепенно понижали температуру до 80-90оС путем последовательной дозировки наполнителей, пластификаторов, пигментов, красителей и на завершающей стадии перемешивали реакционную смесь до однородного состояния.

Липкость герметизирующих материалов определяли по утвержденной методике М-12-2004 (метод катящегося шара), заключающейся в определении длины пробега («тормозного пути») по липкому герметику стального шарика, скатившегося с наклонной плоскости. С увеличением длины пробега шарика липкость герметика уменьшается. Относительная ошибка определения равна ±10%. ПИБ и бутилкаучук (БК) устойчивы к термоокислительной деструкции при длительной эксплуатации, погодостойкие и могут эксплуатироваться без растрескивания при температурах до –60оС. Их недостатками являются хладотекучесть, высокая стоимость и низкий комплекс адгезионно-когезионных свойств к полярным материалам (бетон, металлы, стекло и т.д.), что является следствием неполярной структуры этих карбоцепных полимеров. Кроме того, ПИБ и БК не содержат реакционноспособных функциональных групп и поэтому плохо совмещаются с полярными неорганическими наполнителями (мел, тальк, асбест, цемент и т.д.), количество которых в 3-8 раз превышает количество связующих полимеров. При приготовлении таких композиций приходится использовать высокие (до 160оС) температуры и неполярные пластификаторы на основе минеральных масел для снижения вязкости полимерного связующего в композиции. Также при использовании механического перемешивания мелкодисперсные неорганические наполнители подвергаются агрегации из-за плохой совместимости с неполярным связующим, образуя «комки» наполнителя в полимерной матрице, что приводит к неравномерному распределению наполнителя в герметизирующем материале и ухудшению комплекса эксплуатационных свойств (повышенная скорость «старения» герметика, сокращенный срок эксплуатации из-за потери липкости). Низкомолекулярные неполярные пластификаторы в процессе эксплуатации материала диффундируют на границу раздела герметик-полярный материал, нарушая прочность связи, что приводит к отслаиванию герметика.

Разработанные герметики по сравнению с известными составами имеют лучшую совместимость с неорганическими наполнителями (тальк, каолин, диатомит и др.) с карбоцепными полимерами. В работе было установлено, что каучук при механохимической деструкции, происходящей в смесителе при приготовлении герметиков, реагирует с ОАПП, образуя привитой сополимер ОАПП – карбоцепные каучуки; физико-механические свойства образующегося привитого полимера улучшаются за счет повышения разветвленности каучука. Введение ОАПП в композицию обеспечивает долговременную адгезионную прочность сцепления герметиков с бетоном, металлической подложкой, полиэтиленом. Герметизирующие составы, содержащие более 20% мас. ОАПП не обладают хладотекучестью и устойчивы к сползанию, что резко улучшает комплекс эксплуатационно-технологических свойств: липкость, адгезионно-когезионные свойства к полярным материалам, термостойкость и сопротивление хладотекучести (раздел 7.3).

За счет полной замены бутилкаучука и частичной замены (до 70%) ПИБ значительно снижается себестоимость герметизирующих материалов при сохранении необходимого комплекса физико-механических свойств; введение ОАПП улучшает технологичность переработки герметизирующих составов в экструдерах за счет низкой вязкости расплава ОАПП и аппретирования поверхности неорганических наполнителей, значительно сокращает время приготовления герметиков в смесителях. Совместно с ЗАО «Гермаст» освоено промышленное производство разработанных герметиков и выпущено 40 т новых герметизирующих материалов.

В восьмой главе изложена концепция производства и рационального применения отхода производства – атактического полипропилена и продуктов его термоокислительной деструкции в рамках Западно-Сибирского территориально-промышленного комплекса. Из ряда полиолефинов полипропилен остается и в настоящее время наиболее интересным и перспективным высокомолекулярным веществом. Для повышения конкурентоспособности выпускаемой продукции и рентабельности производства российских производителей нами было выдвинуто предложение переориентировать производственные мощности ООО «ТНХК» с производства изотатктического полипропилена на выпуск некристаллических полимеров пропилена. Учитывая потребности российских промышленных предприятий в АПП и некристаллических полимерах пропилена, которая оценивается в 100,0 тыс. т/год, высокую стоимость некристаллических полимеров пропилена (1000 дол./т) и большие возможности экспорта, предлагаемая технология их получения с использованием микросферического катализатора первого поколения (МСК-1) является экономически обоснованной. Сырье для реализации данного проекта горит в нашей стране повсеместно на факельных установках нефтедобывающих предприятий. В сложившейся практике эксплуатации нефтегазодобывающих ТПК до настоящее времени не учитывается ресурсный потенциал ПНГ.

По современным данным за 2008 год объем факельного сжигания попутного газа в мире составил порядка 168 миллиарда м3. При этом 50,7 миллиарда м3 из этого объема сожгли в России, из них 26,7 миллиарда м3 – на территории Западно-Сибирского ТПК (ЗСТПК). Несмотря на падение цены на углеводородное сырье, полипропилен как стоил 1000 долларов за тонну, так и стоит на сегодняшний день.



Pages:     | 1 | 2 || 4 | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.