авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 3 | 4 || 6 |

Ресурсы почвенных вод и водообеспеченность агроценозов в условиях юга русской равнины

-- [ Страница 5 ] --

Статистические оценки величин дефицита водопотребления, суммарного испарении (включая транспирацию и испарение воды почвой), выполненные по материалам шести характерных станций, позволили сделать вывод, что среди составляющих элементов водного баланса орошаемого поля яровой пшеницы величина дефицита водопотребления характеризуется наибольшей изменчивостью, коэффициент вариации составляет 0,31-0,56; суммарное испарение , испарение воды почвой и транспирация имеют изменчивость, характеризующуюся коэффициентами вариации 0,06-0,16.

Глава 6.

Агрогидрологическая Эффективность приемов «сухого земледелия» в лесостепной и степной зонах России

6.1. Агротехнические приемы регулирования почвенных вод

Снижение интенсивности и повторяемости засух на посевах неорошаемых культур в принципе возможно лишь за счет воды, которая теряется для земледелия в виде поверхностного стока, сносимого с полей снега и непродуктивного испарения (испарения воды почвой). На использование именно этих резервов направлены широко проводящиеся агротехнические мероприятия и снежные мелиорации. Приводится обзор агротехнических приемов обработки почвы, парования полей и применения мульчирования, направленных на накопление и сохранение запасов воды в почве. Рассматриваются климатические (Шикломанов, Георгиевский, 2003) и антропогенные (Государственный национальный доклад, 2007) причины увеличения стока с сельскохозяйственных полей, начавшиеся с 1990-х годов.

6.2. Задержание стока талых вод на полях

Задержание стока талых вод на полях не только является несомненным резервом повышения водообеспеченности посевов сельскохозяйственных культур, но может рассматриваться и как средство борьбы с водной эрозией почвы и смывом удобрений и ядохимикатов с сельскохозяйственных полей. При оценках влияния задержания стока талых вод на сельскохозяйственных полях в лесостепной и степной зонах на водообеспеченность посевов яровой пшеницы принято, что величина задержанного стока составляет 80% от стока весеннего половодья по В.Д.Комарову (Комаров, 1959), и увеличение транспирации в этом случае будет равно 65% от величины задержанного стока. Значения водообеспеченности посевов яровой пшеницы при задержании 80% стока весеннего половодья на сельскохозяйственных полях показаны на рис. 28 (Shumova, 1997). На рис. 29 представлен график связи между величинами параметра водообеспеченности посевов яровой пшеницы в условиях применения традиционной агротехники и при задержании на сельскохозяйственных полях 80 % стока весеннего половодья . Для районов, где весенний сток больше, параметр водообеспеченности возрастает на 20%, а где меньше - на 10%.

 Средние многолетние значения параметра водообеспеченности посевов яровой-258
Рис. 28. Средние многолетние значения параметра водообеспеченности посевов яровой пшеницы при задержании 80 % стока весеннего половодья Рис. 29. График связи между величинами водообеспеченности посевов яровой пшеницы в условиях применения традиционной агротехники и при задержании 80 % стока весеннего половодья

В основу оценки влияния зяблевой пахоты на водообеспеченность посевов яровой пшеницы положена кривая коэффициента уменьшения склонового с тока в зависимости от годовой величины осадков (Коронкевич, 1970), согласно которой в лесостепной зоне величина стока с сельскохозяйственных полей под влиянием зяблевой пахоты в среднем уменьшается в 2,7 раза, а в степной зоне – в 8,8 раз. Увеличение транспирации составит в данном случае 65% от величины стока, задержанного в результате применения зяблевой пахоты. Выполненные исследования показали, что эффективность применение зяблевой пахоты в целях повышения водообеспеченности посевов и мероприятий по задержанию 80% стока весеннего половодья практически одинакова (Shumova, 1997).

6.3. Парование полей

В основе оценки эффективности влияние чистых паров на водообеспеченность посевов лежат результаты расчетов запасов воды в почве и испарения на паровых полях и полях, занятых посевами яровой пшеницы (Shumova, 1997). Метод расчета испарения и запасов воды в почве парового поля является частным случаем метода расчета суммарного испарения, при котором расчет сводится к определению испарения поды оголенной почвой по зависимости (4), в которой величина потенциального испарения определяется как

(23)

Запасы воды в почве рассчитываются по зависимости (15), где и принимают следующие значения

(24)

(25)

Расчет испарения и запасов воды в почве парового поля выполнен на основе тех же метеорологических элементов и начальных запасов воды в почве как и для полей яровой пшеницы в условиях применения традиционной агротехники. Различие состояло в том, что при расчете по пару относительная площадь листьев принималась равной нулю, а на поле, занятом яровой пшеницей, относительная площадь листьев принималась равной трем.

Средние многолетние величины испарения парового поля на исследуемой территории изменяются в пределах от 473 до 211 мм (рис. 30). Разница в испарении парового поля и поля, занятого посевом яровой пшеницы, доходит в довольно увлажненных районах до 22%. В засушливых районах юго-востока разница в испарении парового поля и поля, занятого посевом яровой пшеницы, составляет лишь 5%. Например, на станции Харабали (низовья Волги) средняя многолетняя величина испарения поля, занятого яровой пшеницей, составляет 222 мм, а парового поля – 211 мм. Средние значения испарения парового поля для характерных станций лежат в диапазоне от 270 мм (Ершов) до 385 мм (Мироновка). Среднее квадратическое отклонение изменяется от 42 до 63 мм, коэффициент вариации лежит в пределах 0,12-0,15. Исключение, как и в случае поля, занятого посевами яровой пшеницы, составляет Ершов, где коэффициент вариации равен 0,23.

В районах с большим количеством осадков с парового поля испаряются только осадки безморозного периода , а в засушливых районах на испарение парового поля наряду с осадками безморозного периода расходуются и весенние запасы почвенных вод . На рис. 31 показаны границы, в пределах которых на испарение парового поля расходуются не только осадки безморозного периода, но и весенние запасы воды в почве. Сохранение весенних запасов воды в почве на паровом поле к моменту наступления отрицательных температур воздуха осенью может наблюдаться за пределами указанной зоны, а в ее пределах осенние запасы воды в почве парового поля ниже, чем те, которые наблюдаются весной.

Рис. 30. Средние многолетние величины испарения парового поля за безморозный период, мм Рис. 31. Средние многолетние значения разностей продуктивных запасов воды в метровом слое почвы на чистом пару и на полях яровой пшеницы к моменту наступления отрицательных температур воздуха осенью, мм Штриховой линией показаны границы, внутри которых отношение осадков безморозного периода к испарению парового поля меньше единицы

На рис. 31 также представлены изолинии средних многолетних разностей продуктивных запасов воды в метровом слое почвы к моменту наступления отрицательных температур воздуха осенью на чистом пару и полей яровой пшеницы . Хорошо прослеживается тенденция уменьшения указанных разностей с северо-запада на юго-восток; диапазон этого изменения находится в пределах от 97 до 14 мм запасов воды метрового слоя почвы. Средние значения величин для характерных станций изменяются от 34 мм (Ершов) до 87 мм (Одесса). Средние квадратические отклонения величин колеблются в пределах от 14 до 25 мм. Наибольший коэффициент вариации наблюдается в Ершове и составляет 0,49, затем следует Безенчук и Каменная Степь (0,34 и 0,32 соответственно) и остальные станции Гигант, Одесса и Мироновка (0,24-0,21).

Анализируется внутригодовая динамика продуктивных запасов воды в почве парового поля и поля, занятого посевами яровой пшеница на характерных станциях.

При оценках влияния посева яровой пшеницы по пару на ее водообеспеченность принято, что весенние запасы воды в почве увеличиваются на величину разности запасов воды метрового слоя почвы парового поля и поля, занятого посевом яровой пшеницы, на момент наступления отрицательных температур воздуха осенью . Анализ материалов расчетов показал, что практически одного и того же эффекта повышения водообеспеченности посевов яровой пшеницы можно достичь мероприятиями по задержанию 80% весеннего стока на сельскохозяйственных полях, зяблевой пахотой и парованием полей, но при этом задержание стока и зяблевая пахота сочетаются с получением урожая в тот же год.

6.4. Снижение непродуктивного испарения

6.4.1. Подходы к оценке испарения воды почвой

Рассматриваются гидрологические аспекты применения поверхностно-активных веществ (ПАВ) на сельскохозяйственных полях, в результате обработки которыми почва приобретает гидрофобные свойства, и приводится зависимости для расчета испарения воды почвой, обработанной ПАВ (Будаговский, Шумова, 1976). Приводится детальная методика оценки испарения воды почвой при наличии соломенной мульчи, в основе которой лежат данные о числе дней с осадками различной величины.

Разработан упрощенный метод оценки испарения воды почвой при наличии мульчи (Шумова, 2010), в основе которого лежит график (рис. 32), на оси абсцисс которого отложены величины ( - месячные значения потенциального испарения воды почвой, - число дней с осадками мм), на оси ординат - значения ( - месячные величины испарения воды почвой при мульчировании). Данный график позволяет по рассчитанной величине определить значение , а затем за месяц. Выбор ветви на графике осуществляется в соответствие с месяцем, для которого производится расчет.

 График связи между приведенными потенциальным испарением воды почвой и-291 Рис. 32. График связи между приведенными потенциальным испарением воды почвой и испарением воды почвой при мульчировании I июнь, июль, август; II май, сентябрь, октябрь; III апрель, ноябрь; IV март

Использование графика (рис. 32) намного упрощает расчет испарения воды почвой при мульчировании, сохраняя при этом приемлемую точность. Коэффициент корреляции между величинами испарения воды почвой при мульчировании, полученными с использованием подробных данных о числе дней с осадками различной величины и по графику (рис. 32), равен 0.94.

6.4.2. Испарение и водообеспеченность посевов при мульчировании почвы

Анализируются результаты расчетов составляющих водного баланса сельскохозяйственных полей лесостепной и степной зоны при мульчировании почвы (Шумова, 2010). Величина суммарного испарения за безморозный период при мульчировании почвы или сохраняет свое первоначальное значение, или же уменьшается по сравнению с суммарным испарением в условиях применения традиционной агротехники. То есть для средних многолетних условий можно записать , где - суммарное испарение при мульчировании почвы. Для засушливой части исследуемой территории характерно равенство , а для более влажных регионов - (рис. 33).

Рис. 33. Средние многолетние величины отношений Темными кружками показаны случаи, когда

В среднем при мульчировании почвы величина отношения на территории лесостепной и степной зон может составить 0,94, то есть суммарное испарение при мульчировании почвы может уменьшиться на 6%. Если рассматривать конкретные станции, то в среднем многолетнем разрезе уменьшение суммарного испарения за безморозный период может доходить до 23-25% (Владимир-Волынский и Краснодар), что в абсолютных величинах составляет 105 и 135 мм соответственно.

При анализе динамики суммарного испарения на характерных станциях можно отметить, что в отдельные годы мульчирование приводит к снижению суммарного испарения, а в последующие накопленная в почве вода может привести к его увеличению (за счет увеличения транспирации), что характерно, например, для Ершова (рис. 34), где средние величины суммарного испарения в условиях применения традиционной агротехники и при мульчировании почвы практически одни и те же. В Каменной Степи снижение суммарного испарения при мульчировании почвы может составить 7% или 25 мм.

 Межгодовая динамика суммарного испарения полей яровой пшеницы за-304  Межгодовая динамика суммарного испарения полей яровой пшеницы за-305
Рис. 34. Межгодовая динамика суммарного испарения полей яровой пшеницы за безморозный период в условиях применения традиционной агротехники (светлые кружки) и при мульчировании почвы (темные кружки) в Ершове и Каменной Степи

Анализируется межгодовая изменчивость суммарного испарения при мульчировании почвы. Показано, что доля транспирации в суммарном испарении при мульчировании почвы в исследуемом регионе может в среднем составить 62%.

Выполненные расчеты величин транспирации и потенциальной транспирации посевов яровой пшеницы при мульчировании почвы позволили получить параметры водообеспеченности как средние многолетние так и за ряд лет (Shumova, 1997; Шумова, 2010). При мульчировании почвы на значительной части лесостепной зоны засухи в средний по водности год могут полностью прекратиться, а на остальной территории рассматриваемого региона их интенсивность станет меньше (рис. 35).

Рис. 35. Средняя многолетняя водообеспеченность посевов яровой пшеницы при мульчировании почвы для всего вегетационного периода (всходы - полная спелость) Рис. 36. График связи между величинами водообеспеченности посевов яровой пшеницы в условиях применения традиционной агротехники и при наличии мульчи


Pages:     | 1 |   ...   | 3 | 4 || 6 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.