авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 5 | 6 || 8 |

Николаевна эффекты сейсмичности в режиме подземных вод (на примере камчатского региона)

-- [ Страница 7 ] --

Такие особенности в режиме слабой сейсмичности на стадиях подготовки сильных землетрясений рассматриваются в работе (Гольдин, 2005) как проявление аккомодационных процессов в напряженной геологической среде, находящейся в состоянии предразрушения. Сейсмические затишья маркируют области диссипации тектонической энергии через квазипластическое течение горных пород. Сейсмическая активизация (форшоки, землетрясения-кластеры) указывает на диссипацию тектонической энергии по механизму хрупкого разрушения. Сильные коровые и верхнемантийные землетрясения обычно происходят на границах областей сейсмического затишья в зонах с контрастными механическими свойствами среды. Местоположение эпицентров сильных землетрясений может совпадать с областями слабой активизации сейсмичности в форме аномалий накопленных площадей сейсмогенных разрывов, землетрясений-кластеров и форшоков.

С начала 70-х гг. XX в. на Камчатке проводятся инструментальные измерения современных движений земной коры, которые позволили получить количественные и качественные оценки величин, скорости, характера и интервалов времени аномальных деформаций в связи с отдельными сильными землетрясениями (Левин и др., 2004). По данным круглогодичных светодальномерных измерений горизонтальных деформаций из обсерватории Мишенная обнаружены тренды сжатия по всем линиям со скоростью -0.03 – -0.1610-6 в год при точности измерений 1-210-7. На фоне трендов сжатия выделены бухтообразные укорачивания линий, предшествующие сейсмическим событиям с М  6.6, в частности, землетрясениям 17.08.1983 г., 06.10.1987 г., 02.03.1992 г. и 05.12.1997 г. (рис. 9А). Продолжительность бухт сжатия, по оценкам авторов (Левин и др., 2004), составляет от нескольких месяцев до первых лет. Амплитуды сжатия составляли первые единицы 10-6.

По данным гидрогеологических наблюдений установлено, что проявление гидрогеохимического предвестника перед сильными землетрясениями наиболее надежно регистрируется в плавных понижениях концентрации хлор-иона в воде скв. ГК-1 (Копылова и др., 1994; Хаткевич, Рябинин, 2004). На рис. 9Б приводится сопоставление изменений длин линий светодальномерных измерений с вариациями концентрации хлор-иона в воде скв. ГК-1 за период 1985-1995 гг. Понижения концентрации хлора ярко выражены перед землетрясениями 06.10.1987 г, 02.03.1992 г. и 01.01.1996 г., которым также предшествовало относительное укорачивание линий светодальномерных измерений. Слабее проявилось понижение концентрации хлора и укорачивание линий светодальномерных измерений перед землетрясениями 08.06.1993 г. и 13.11.1993 г. (8 и 9 на рис. 9Б).

Рисунок 9 - Изменения длин линий светодальномерных измерений в 1979-2001 гг. (Левин и др., 2004) (А) и сопоставление вариаций концентрации хлора в воде скважины ГК-1 с изменениями длин линий светодальномерных измерений в 1985-1995 гг. (Б). Вертикальные линии – сильные землетрясения (номера землетрясений по Копылова, 2008).

Связь вариаций химического состава подземной воды с эпизодами горизонтального сжатия территории Петропавловского полигона объясняется развитием специфического процесса объемного деформирования водовмещающих пород в водоносной системе, питающей скважину. Можно предположить, что на стадиях подготовки землетрясений образуются дополнительные концентраторы напряжений в пределах Камчатской сейсмофокальной зоны вследствие затруднения в перемещении океанического и континентального литосферных блоков. Формирование таких концентраторов приводит к росту напряжений в среде сейсмофокальной зоны и сопровождается горизонтальным сжатием коры континентальных районов. В области границы кора-атмосфера может происходить трансформация избыточных напряжений и развитие «пограничного» слоя трещинной дилатансии (Алексеев и др., 2001) в водовмещающих породах и изменение их проницаемости.

Понижение концентрации хлора в воде скв. ГК-1 отражает процесс разбавления подземных вод, содержащихся в водоносной системе, менее минерализованными водами, распространенными в приповерхностном водоносном горизонте. Отсюда следует, что дилатансия в водовмещающих породах на стадиях подготовки землетрясений развивается преимущественно в самых верхних зонах водоносной системы, питающей скважину ГК-1. При развитии дилатансии в более глубоких горизонтах геологического разреза в районе станции Пиначево следует ожидать избыточное поступление в водоносную систему более минерализованных вод и увеличение концентраций относительно глубинных компонентов химического состава в изливающейся воде. Такое явление наблюдалось в течение трех месяцев перед КЗ, когда длительное понижение концентрации хлора в воде скважины ГК-1 сменилось на его заметное увеличение (Хаткевич, Рябинин, 1998, 2004). В этом случае можно полагать, что развитие трещинной дилатансии в водовмещающих породах распространялось во времени от верхних горизонтов к более нижним, содержащим более минерализованные подземные воды с повышенной концентрацией хлор-иона.

В связи с Кроноцким землетрясением 05.12.1997 г., Mw = 7.8 по данным наблюдений на сети GPS-станций зарегистрированы пред-, ко- и постсейсмические деформации на расстояниях до сотен км от эпицентра (Gordeev et al., 2001; Левин и др., 2004). Предсейсмические деформации возникли за 1-0.5 мес. до землетрясения и отражали предшествующие этому землетрясению преимущественно асейсмические движения в области очага. В течение трех суток до землетрясения в эпицентральной зоне развивался рой землетрясений с максимальными магнитудами М = 5-4 (Гусев и др., 1998; Левина и др., 2003). За три недели до землетрясения во время развития предсейсмических движений в изменениях уровня воды в скважинах ЮЗ-5 и Е1, удаленных на 200 км от очага, зарегистрировано синхронное понижение уровня воды, которое выделено в гидрогеодинамический предвестник этого события (Копылова, 2006). В этом случае вариации уровня воды объясняются преимущественно упругой деформацией водовмещающих пород вследствие развития интенсивных предсейсмических движений в окрестности будущего очага.

Перед Кроноцким землетрясением гидрогеохимические предвестники в режиме самоизливающихся скважин проявлялись в течение нескольких месяцев (Хаткевич, Рябинин, 1998, 2004). Это указывает на предшествующее этому землетрясению существенное изменение условий смешивания контрастных по химическому составу флюидов в питающих водоносных системах. Проявление гидрогеохимических предвестников могло быть связано с длительной (месяцы) эволюцией приповерхностной зоны трещинной дилатансии в водовмещающих породах в процессе подготовки Кроноцкого землетрясения.

Сопоставление вариаций сейсмических, деформационных и гидрогеологических параметров на стадиях подготовки сильных камчатских землетрясений позволяет выделить два типа их связи.

Первый тип соответствует формированию гидрогеохимических аномалий в режиме подземных вод на заключительной стадии развития сейсмического затишья на прилегающем участке сейсмофокальной зоны, сопровождающемся горизонтальным сжатием земной коры территории Петропавловского полигона. Образование устойчивых пространственных областей сейсмического затишья и последующей слабой активизации на стадиях подготовки сильных землетрясений рассматривается в соответствии с моделью (Гольдин, 2004, 2005), как проявление аккомодационной реакции неоднородной среды Камчатской сейсмоактивной зоны, находящейся в состоянии предразрушения. Такие процессы были выявлены комплексом сейсмологических методов (RTL, S, землетрясения-кластеры) и проявлялись в течение первых лет до возникновения сейсмических активизаций 1992-1993 гг. (три землетрясения с М=6.8-7.5) и 1996-1997 гг. (четыре землетрясения с М=7.0-7.8).

Повторяющаяся совокупность сейсмических, деформационных и гидрогеологических процессов наиболее ярко проявлялась на среднесрочных стадиях подготовки землетрясений 06.10.1987 г., 02.03.1992 г., 05.12.1997 г. Характерный интервал времени развития сейсмических, деформационных и гидрогеологических процессов, связанных с подготовкой сильных землетрясений, составляет первые годы – месяцы. При этом гидрогеологические аномалии имеют наименьшую заблаговременность проявления перед землетрясениями – от девяти до одного месяца. Формирование гидрогеологических аномалий перед возникновением сильных землетрясений может быть связано с развитием приповерхностной («пограничной» по (Алексеев и др., 2001)) зоны трещинной дилатансии в водовмещающих породах, изменением их проницаемости и условий гидродинамического и гидрогеохимического взаимодействия потоков подземных вод с различным химическим составом воды и газа.

Второй тип связи гидрогеологических, деформационных и сейсмических процессов наблюдался в связи с краткосрочной стадией подготовки Кроноцкого землетрясения и проявлялся в синхронном развитии гидрогеодинамического предвестника в изменениях уровня воды в двух скважинах (ЮЗ-5 и Е1) и деформационного предвестника по данным наблюдений на сети GPS-станций, а также в развитии форшоковой активизации в области очага. Наиболее вероятным механизмом формирования гидрогеодинамических предвестников в этом случае является развитие преимущественно упругой деформации в водовмещающих породах при активизации предшествующих Кроноцкому землетрясению сейсмотектонических движений в очаговой области.

Основные выводы по главе 5. 1. Впервые рассмотрена связь аномальных изменений в режиме подземных вод, вариаций слабой сейсмичности и горизонтальных деформаций на стадиях подготовки сильных камчатских землетрясений 1987-1997 гг. Среднесрочные гидрогеологические предвестники возникают на заключительных стадиях формирования сейсмического затишья на обширных участках Камчатской сейсмоактивной зоны, во время слабой активизации в области потенциальных очагов землетрясений. Им может предшествовать горизонтальное сжатие континентальных районов по геодезическим данным. Среднесрочные гидрогеологические предвестники отражают стадию подготовки сильных землетрясений, сопровождающуюся развитием приповерхностной зоны трещинной дилатансии в водовмещающих породах.

2. На краткосрочной стадии подготовки Кроноцкого землетрясения при развитии асейсмических движений в зоне будущего очага проявлялся гидрогеодинамический предвестник в изменениях уровня воды в двух скважинах. В качестве основного механизма его формирования рассматривается квазиупругая деформация расширения водовмещающих пород.

3. Результаты обобщения материалов сейсмологических, геодезических и гидрогеологических наблюдений 80-90 гг. XX в., проводимых в целях поиска предвестников землетрясений, могут служить основой создания региональной модели процессов подготовки землетрясений и развития среднесрочных методов сейсмического прогноза.

ЗАКЛЮЧЕНИЕ

Основные научные и практические результаты, полученные в предыдущих публикациях автора и в настоящей диссертационной работе:

1. По данным многолетних специализированных наблюдений на скважинах и источниках Камчатки впервые дано систематическое описание гидрогеосейсмических вариаций параметров режима напорных пресных и термоминеральных подземных вод, проявляющихся в связи с местными и удаленными сильнейшими (М  7.6) землетрясениями. В зависимости от соотношения величин магнитуды и гипоцентрального расстояния землетрясений гидрогеосейсмические вариации параметров режима таких скважин и источников могут состоять из пред-, ко- и постсейсмических частей, каждая из которых определяется различными факторами сейсмического воздействия.

Эффекты воздействия факторов сейсмичности на режим отдельных скважин и источников имеют индивидуальные особенности в зависимости от параметров землетрясений и локальных гидрогеологических условий, определяющих характерные закономерности в проявлении гидрогеосейсмических вариаций в изменениях гидродинамических и гидрогеохимических показателей. Предсейсмические гидрогеосейсмические вариации (гидрогеологические предвестники) проявляются в основном в связи с наиболее сильными сейсмическими событиями с величинами отношения M/lgR  3.1 (М = 6.6-7.8, R = 90-320 км).

Применение методов многомерного статистического анализа для обработки данных наблюдений за режимом самоизливающихся скважин и источников позволило выделить новый вид гидрогеологического предвестника, а именно среднесрочное (в течение недель-месяцев) увеличение синхронизации в совокупном изменении дебитов, температуры воды, концентраций компонентов химического и газового состава подземных вод. Такой предвестник выявлен перед пятью сильными землетрясениями 1987-1996 гг., сопровождавшимися в районе г. Петропавловска-Камчатского сотрясения от 5-6 до 4 баллов по шкале MSK-64. Проявление такого вида гидрогеологического предвестника однозначно указывает на развитие аномальных физико-химических состояний в водоносных системах напорных пресных и термоминеральных подземных вод Камчатки на стадиях подготовки землетрясений с М  6.6.

2. На примере скважины ЮЗ-5 дано феноменологическое описание гидрогеодинамических процессов в системе «скважина – напорный резервуар пресных подземных вод» при воздействии основных факторов сейсмичности. При этом учитывались оцененные упругие и фильтрационные параметры резервуара подземных вод, геометрические размеры скважины, выполнялось математическое моделирование инерционного эффекта водообмена и различных типов гидрогеосейсмических вариаций уровня воды на основе современных теоретических моделей гидрогеодинамических процессов в системе «скважина-резервуар».

Косейсмические скачки уровня воды при местных сильных землетрясениях и гидрогеодинамический предвестник перед Кроноцким землетрясением (в форме понижения уровня в течение трех недель) представляют статически изолированный отклик порового давления на квазиупругую деформацию водовмещающих пород. Такой отклик уровня управляется, в основном, упругими параметрами резервуара подземных вод. Процессы течения воды в таком случае не имеют существенного значения и ими можно пренебречь в диапазоне периодов проявления статически изолированного отклика уровня воды, который определяется экспериментально по результатам барометрического и приливного анализа вариаций уровня воды и моделирования инерционного эффекта водообмена в системе «скважина – резервуар».

Вместе с тем, процессы течения воды в резервуаре и гидродинамического взаимодействия между резервуаром и стволом скважины имеют существенное значение при формировании разнообразных типов постсейсмических вариаций уровня, вызванных прохождением сейсмических волн. Особенности вариаций уровня в таких случаях определяются строением скважины, водопроводящими свойствами водовмещающих пород, составом порового флюида, а также амплитудно-частотным составом максимальных фаз колебаний грунта.

3. На примере скважин Камчатки апробирована методика обработки и интерпретации многолетних данных уровнемерных наблюдений, направленная на выделение гидрогеосейсмических вариаций уровня воды и разработку феноменологических моделей поведения отдельных систем «пьезометрическая скважина – напорный резервуар пресных подземных вод» при сейсмических воздействиях. Разработанная методика и ее элементы, в частности, оценка деформометрических свойств скважин на основе анализа приливного и барометрического откликов уровня воды (Копылова, 2009), использовались для обработки данных уровнемерных наблюдений в других регионах (Копылова, Бормотов, 2004; Копылова и др., 2009; Stejskal et al., 2009). По этой методике оценены деформометрические свойства 32-х наблюдательных скважин Роснедра и КФ ГС РАН (Копылова, Куликов, Тимофеев, 2007). Для 13-ти скважин установлен статически-изолированный барометрический отклик и оценены величины приливной чувствительности уровня воды (Av = 0.015-0.250 см/10-9). Такие скважины могут использоваться для количественной оценки сейсмотектонической деформации водовмещающих пород и при построении принципиально новых количественных карт гидрогеодеформационного (ГГД) - поля. Установлен рост величин приливной чувствительности уровня воды Av с увеличением глубины контролируемого интервала водовмещающих пород (рис. 10). Методическим следствием такой зависимости является предпочтительное использование для гидрогеодинамического мониторинга скважин, вскрывающих напорные пресные подземные воды на глубинах не менее первых сотен метров.

4. По данным о косейсмических скачках уровня воды в скважине ЮЗ-5 и величине приливной чувствительности уровня выполнены количественные оценки объемной косейсмической деформации при шести местных землетрясениях. Хорошее соответствие величин и знака косейсмической деформации в районе скважины по данным уровнемерных наблюдений с

Рисунок 10 – Зависимость величин приливной чувствительности уровня воды Av от средней глубины открытого интервала водовмещающих пород (H).

1 – скважины (номера скважин приводятся по (Копылова, Куликов, Тимофеев, 2007)); 2 – тренд линейной зависимости Av от Н; 3 – 95%-ный доверительный интервал зависимости Av=(0.00022±0.00004)Н+(0.00376±0.03054). R – коэффициент линейной корреляции.

результатами расчетов по модели дислокационного источника в однородном упругом полупространстве показывает, что по уровнемерным данным возможна оценка объемной деформации резервуара подземных вод при развитии сейсмотектонических процессов, сопровождающихся квазиупругой деформацией водовмещающих пород.

5. По данным многолетних уровнемерных наблюдений оценена сейсмопрогностическая информативность гидрогеодинамического предвестника, проявляющегося в увеличении скорости понижения уровня воды в скважине Е1 перед землетрясениями с М  5 и с М  6.6 на расстояниях до 350 км. Эффективность предвестника по (Гусев, 1974) составляет I = 1.8-3.2 при вероятности его связи с землетрясениями p = 0.70 – 0.86. Полученные оценки показывают, что этот предвестник может использоваться в комплексе с другими сейсмопрогностическими данными для среднесрочного прогноза камчатских землетрясений. На основе этого предвестника с 2002 г. осуществляется оценка опасности возникновения сильных землетрясений на Камчатке с выдачей регулярных сообщений в Камчатский филиал Российского экспертного совета по прогнозу землетрясений.

6. По данным специализированных уровнемерных наблюдений в шести скважинах Камчатки установлены основные закономерности проявления гидрогеосейсмических вариаций уровня воды в связи с сильнейшими (М = 7.6-9.0) землетрясениями.

В зоне 5-6-балльных сотрясений от Кроноцкого землетрясения, М = 7.8, R = 200 км последовательно проявлялись гидрогеологический предвестник, косейсмический скачок порового давления и длительные постсейсмические изменения уровня воды.



Pages:     | 1 |   ...   | 5 | 6 || 8 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.