авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 3 | 4 || 6 |

Планирование и физико-статистическая оценка эффективности искусственного регулирования осадков методами активных воздействий

-- [ Страница 5 ] --

Аналогичные результаты были получены при анализе результатов воздействий на облачные кластеры. В группе облаков с ВГ ячеек Но = 6,58,0 км, т.е. с высотой между изотермами –10оС и –20оС, засеянные ячейки имели время жизни на 10 мин больше, были на 1,6 км выше, имели площадь выпадения осадков на 28% больше и дали осадков на 65% больше, чем контрольные ячейки облачных кластеров. При этом различия во времени жизни облаков, количестве выпавших осадков, мощности облака и максимальной площади осадков за время жизни облака оказались статистически значимыми на уровнях 0,032, 0,047, 0,014 и 0,029, соответственно.

Таким образом, результаты физико-статистического анализа радиолокационных параметров засеянных и контрольных конвективных облаков позволили наглядно продемонстрировать возможность модификации конвективных облаков на КМП путем их динамического засева льдообразующим реагентом.

Сравнение осредненных значений радиолокационных параметров облаков, исследованных в различных географических районах (на Кубе, в Поволжье, Техасе и Таиланде), показали, что при использовании оптимальной методики воздействий засев аэрозолями йодистого серебра близких по типу, мощности и степени переохлаждения облачных ячеек дает возможность получать достаточно сопоставимые количества дополнительных осадков. Показано, что заметное влияние на эффективность воздействий оказывают метеорологические условия, обуславливающие разное водосодержание атмосферы в периоды проведения опытов по засеву облаков.

В четвертой главе приводится обзор методов, используемых для оценки результатов работ по ИРО, из которого следует, что при надлежащем планировании и выполнении наиболее надежные оценки увеличения количества осадков дают рандомизированные эксперименты. Однако следует отметить, что для получения статистически значимого результата требуется получение достаточно большого количества ЭЕ, и, как следствие, большая продолжительность (5-10 лет) проведения рандомизированных экспериментов. Кроме того примерно половина пригодных для воздействия ситуаций используется в них только для контроля, что приводит к недополучению потребителем существенной части дополнительных осадков при выполнении оперативных работ по ИУО. В связи с этим для статистической оценки результатов оперативных работ по ИУО в мировой практике широко используется метод исторической регрессии. Следует отметить, что условия проведения оперативных работ по ИУО на больших территориях как правило таковы, что применить для их оценки классический метод исторической регрессии напрямую не удается. Это обусловлено невозможностью выбора заранее контрольной территории из-за требований заказчика по проведению воздействий на всей территории работ.

Во втором параграфе главы описывается метод исторической регрессии, модифицированный применительно к статистической оценке результатов оперативных проектов по ИУО на больших территориях. Для контроля эффективности работ предлагается использовать «метод плавающего контроля» (МПК), суть которого заключается в использовании в качестве контрольных станций не фиксированного набора метеостанций, а переменного или «плавающего». В качестве контрольных выби­раются станции, которые в течение анализируемого периода работ (обычно при проведении оперативных проектов в качестве такого берется месяц) не испытали воз­действия засева облаков. При этом территория работ делится на зоны (субмишени) с целью повышения точности прогнозирования осадков на площади мишени по регрессионному соотношению за счет увеличения корреляции между осадками контрольных станций и мишени.

В МПК осадки V(j), выпавшие в зоне (субмишени) с номером m в месяце с номером k в j-том году, "прогнозируются" по линейному уравнению регрессии вида:

V(j) =av( j) +bv( j) + cj + d, (4.1)

где v(j) - количество осадков, выпавших на опорной станции с номером i за тот же период; L(m,k) и l(m,k) соответственно обозначены множества контрольных станций, расположенных на площади субмишени с номером m и в ее окрестности, которые оказались на удалении 50-70 км от зоны засева облачности в месяце с номером k. Коэффициенты a, b, cи dопределяются методом наименьших квадратов по данным опорного периода. Количество осадков V(j) определяется путем суммирования проинтерполированных в узлы регулярной прямоугольной сетки величин осадков, измеренных на опорных метеостанциях.

При использовании метода регрессионного анализа возникает задача выбора набора независимых переменных для достаточно точного прогноза количества осадков на территории субмишени по данным контрольных осадкомерных станций. В качестве меры согласия модели регрессии с имеющимися данными широко используется коэффициент детерминации R2, т.е. квадрат множественного коэффициента корреляции R, численно выражающий долю дисперсии зависимой переменной Y, объясненную с помощью регрессионного уравнения, и вычисляющийся по формуле:

R2 = , (4.2)

где =– среднее значение зависимой переменной yi, i – значения, рассчитанные по уравнению регрессии. Из (4.2) следует, что максимизация R2 равносильна минимизации остаточной суммы квадратов и, следовательно, минимизации несмещенной оценки дисперсии S2 = [] / (n–p), где n и p – соответственно длина выборки и число независимых переменных в регрессионной модели, включая свободный член.

Однако, критерий R2 непригоден для процедуры отбора подмножества предикторов, так как при сравнении подмножеств та модель, которая включает больше предикторов, будет иметь большее значение R2, поскольку при включении в регрессионное уравнение новой переменной коэффициент корреляции может только увеличиться. Критерий R2 можно использовать для выбора лучшего подмножества, если число предикторов фиксировано.

В случае переменного числа предикторов вместо R2 в качестве критерия качества прогноза по уравнению регрессии предложено использовать его модификацию – скорректированный коэффициент детерминации, определяемый как

Rp2 = 1 – ( 1 – R2 ) , (4.3)

где p – количество членов в регрессионном уравнении (4.1). Свойства этой статистики таковы, что в отличие от R2 не при всяком включении в уравнение новой переменной ее значение увеличивается. Это происходит только в случае, если F-статистика при проверке гипотезы о значимости включаемой переменной будет больше заданного порогового значения. В противном случае включение нового предиктора уменьшает значение Rp2. Таким образом, наилучшим регрессионным уравнением можно считать уравнение с подмножеством переменных, обеспечивающих наибольшее значение Rp2.

При выборе наилучшего подмножества предикторов наряду со статистикой Rp2 можно использовать связанный с ней показатель, предложенный Маллоузом – Ср, основывающийся на средней ошибке прогноза зависимой переменной и являющийся функцией остаточной суммы квадратов для построения регрессионного уравнения

Ср = – (n – 2p), (4.4)

где – оценка дисперсии случайной ошибки уравнения регрессии, содержащего все переменные; n и p – соответственно длина выборки и число членов в регрессионной модели.

Таким образом, для выбора наилучшего подмножества предикторов в уравнении регрессии могут быть использованы два взаимосвязанных критерия – максимум скорректированного коэффициента детерминации Rp2 и критерий Ср Маллоуза, обеспечивающие минимальность несмещенной оценки дисперсии случайной ошибки уравнения регрессии и, следовательно, наилучшее качество прогнозирования по выбранному уравнению. Для отбора наиболее информативных подмножеств независимых переменных рекомендуется использовать пошаговые процедуры, среди которых наиболее распространенными являются: метод исключения, метод включения и комбинированный метод включения-исключения.

После завершения процедуры определения оптимального уравнения регрессии эффект от проведения активных воздействий с целью ИУО на субмишени m в месяце с номером k, выраженный в виде объема дополнительных осадков V, определяется как разность , т.е. разность между фактически выпавшими на ней осадками V и их оценкой по оптимальному уравнению регрессии.

В пятой главе рассматриваются результаты оперативных работ по ИУО, выполненных российскими специалистами в Республике Саха (Якутия), в Сирийской Арабской Республике (САР), в Исламской Республике Иран и Португалии с использованием описанной в предыдущих разделах диссертации российской технологии искусственного увеличения атмосферных осадков.

Проект в САР был проведен в виде законченного цикла работ от предварительного научного обоснования (исследование метеоусловий и демонстрация возможностей российской технологии ИУО, проведенные в марте-апреле 1991 года) и подтверждающего эксперимента на всей территории Сирии (площадь около 185 000 км2) в течение сезона осадков (с декабря по март 1991-1992 гг.), до пятилетнего производственного проекта (1992-1997 гг.) и полной передачи российской технологии ИУО сирийской стороне.

В первые два сезона в работах единовременно использовалось до пяти российских СМЛ (Ил-18, Ан-12, Ан-26 и ЯК-40). В 1992-1993 гг. российскими специалистами было оборудовано четыре сирийских СМЛ (два Ан-26 и два ЯК-40), и, начиная с сезона 1993-1994 гг., в работах использовались только сирийские самолеты. Все самолеты были оборудованы ИВК и средствами для засева облаков. В качестве реагента для засева облаков использовалось йодистое серебро, вводимое в облака путем отстрела пиропатронов ПВ-26 и ПВ-50 в момент пролета самолета над облаками или на 100-300 м ниже ВГ облачности. Для управления авиаработами в 1991-1992 гг. на территории САР была создана радиолокационная система из четырех радиолокаторов МРЛ-5, оборудованных автоматизированными комплексами АКСОПРИ, практически полностью перекрывающих территорию страны (рис. 5.1).

Для оценки результатов воздействий в проекте был разработан и апробирован модифицированный метод исторической регрессии или «метод плавающего контроля» (МПК), подробное описание которого приведено в четвертой главе диссертации. Потенциальными предикторами уравнений регрессии (4.1) являлись суммарные за месяц количества осадков (т.к. архив содержит месячные суммы осадков), выпавших на тех из 47 опорных метеостанций, которые в конкретном месяце сезона воздействий находились вне зоны 2-х часового переноса облачности и осадков от всех линий воздействия данного месяца. Направление и скорость переноса для каждого случая воздействия определялись по данным радиолокационных комплексов АКСОПРИ. В качестве опорных использовались 47 станций метеорологической сети Сирии, имеющих непрерывные 30-летние ряды наблюдений с 1959 по 1988 гг. Принимая во внимание высокую пространственную неоднородность осадков на территории Сирии, оценка воздействий проводилась по шести зонам (субмишеням), характеризующимся сравнительной однородностью средних многолетних слоев осадков.

Результаты статистической оценки эффективности регулярных воздействий на облака показали, что за шесть сезонов работ было получено от 0,9 до 4,8 км3 дополнительной оводы, что составило 6,9-16,5% от естественных осадков. При этом для четырех сезонов величины эффекта были статистически значимыми, как и оценка за весь период работ. В целом, на территории САР в период 1991-97 гг. в среднем за сезон было получено около 3 км3 дополнительной воды, что составляет 11,1% от их естественного объема. При этом себестоимость одной тонны воды, полученной в результате АВ, за 6-ти летний период по оценкам сирийской стороны составила около 0,003 доллара США.

Для оценки экономической целесообразности ИУО в интересах сельского хозяйства Сирии, были выполнены исследования связи количества выпадающих в период с декабря по март осадков с урожайностью. Для исследований рассмотрены данные для трех основных сельскохозяйственных культур: пшеницы, высокопродуктивной пшеницы и ячменя, занимающих около 95 процентов от общей площади земель, используемых в Сирии для неорошаемого выращивания сельхозпродукции. Для пшеницы и ячменя использовались данные за 20-летний период (1971-90 гг.), а для высокопродуктивной пшеницы – за 17-летний период (1974-1990 гг.). Регрессионный анализ продемонстрировал наличие тесной связи урожайности с объемом выпадающих за четыре месяца осадков (рис. 5.2).

Для оценки экономической эффективности ИУО была использована полученная с помощью регрессионного анализа связь урожайности пшеницы с количеством осадков. В предположении, что рост осадков благодаря АВ на облака составит 10-15%, объем дополнительно полученной воды V будет около 3 - 4,5 км3. При занятой в 1990 г. под пшеницу площади S = 1 млн. га, увеличение сбора урожая будет равно 81-122 тыс. тонн. При стоимости 1 кг пшеницы 0,1 доллара США экономическая эффективность увеличения осадков, выпадающих в период с декабря по март, т.е. в наиболее благоприятные с точки зрения увеличения осадков месяцы, составит около 8-12 млн. долл. США.

Проект по ИУО в Центральной части Ирана (провинция Йязд) был начат в 1999 г. и продолжается по настоящее время. В первом сезоне (февраль-апрель 1999 г.) работы проводились на площади радиусом 200 км (около 125 тыс. км2) (рис. 5.3), с использованием российского СМЛ Ан-30, оборудованного ИВК и системой для отстрела пиропатронов ПВ-26 с йодистым серебром. Для измерения осадков и статистической оценки эффекта воздействий использовались 42 осадкомера, имеющие 26-летние ряды наблюдений.

Во втором и третьем сезонах (январь-апрель 2000 и 2001 гг.) площадь работ была увеличена до 280 тыс. км2 в 2000 г. и до 385 тыс. км2 в 2001 г. (т.е. работы выполнялись в радиусе 300 и 350 км вокруг г. Йязд), и для измерения осадков и статистической оценки эффект воздействий, проводившейся по семи зонам, характеризующимся сравнительной однородностью средних многолетних слоев осадков, использовались данные 106 и 150 осадкомеров с 26-летними непрерывными рядами наблюдений. Для засева облаков наряду с йодистым серебром использовался жидкий азот, распыляемый в облаках с помощью самолетных азотных генераторов ГМЧЛ-А. С 2001 г. в работах используется два радиолокационных комплекса АКСОПРИ-Е.

В сезоне 2006-2007 гг. после приобретения иранской стороной двух самолётов Ан-26 и их оборудования ИВК и техническими средствами воздействий, были продолжены полевые работы по засеву облаков на территории Проекта, площадь которого была увеличена до 500 тыс. км2 (территория в радиусе 400 км вокруг г. Йязд). Работы выполнялись с 26 ноября 2006 г. по 14 апреля 2007 г.

Результаты статистической оценки эффективности оперативного засева облаков на территории Центральной части Ирана, полученные с использованием МПК показали, что за 3-5 зимних месяцев может быть получено от 0,7 до 4,8 км3 дополнительной воды или от 14 до 40% от их естественного количества, что позволяет компенсировать наблюдаемое для данной территории 10-12%-ное уменьшение количества естественных осадков.

В 1995-1997 и 2003-2005 гг. проводились опытно-производственные работы по ИУО на территории Республики Саха (Якутия) – в междуречье рек Лены и Амги на площади около 30 000 км2 (рис. 5.4). За этот период было выполнено 7 летных экспедиций на самолетах Ан-26, Ан-30 и Ил-18, оборудованных быстросъемными комплексами технических средств в составе ИВК, самолетного генератора ГМЧЛ-А и системы отстрела пиропатронов ПВ-26 и ПВ-50. В 2004 г. с целью повышения экономической эффективности работ был оборудован самолет Ан-26 якутской авиакомпании «СирАЭРО», на котором было установлено метеооборудование и средства воздействия для засева облаков пиропатронами ПВ-26 и жидким азотом.

Результаты статистической оценки эффективности засева облаков на территории Центральной Якутии, выполненные с использованием МПК, показали, что использование разработанной в ЦАО технологии АВ на облака позволило увеличить ежемесячное количество осадков на территории работ от 10 до 117%, т.е. ежемесячно получить дополнительно от 40 до 365 миллионов тонн пресной воды.

В октябре-ноябре 1999 г. российскими специалистами была выполнена в Португалии полевая программа по исследованию и проведению пробных воздействий на облачность осеннего периода с целью оценки ее пригодности для ИУО с использованием российской технологии. Для исследования облачности и проведения воздействий использовался СМЛ АН-30 «Циклон», оборудованный ИВК и средствами для засева облаков с использованием пиропатронов ПВ-26-95 с йодистым серебром и жидкого азота. Для контроля результатов воздействий использовались осадкомерные данные 50 станций метеослужбы Португалии, имеющие 30-летние непрерывные ряды суточных слоев осадков. В результате исследований облачности и статистической оценки эффекта воздействий, выполненной с использованием МПК, было установлено, что за 8 рабочих дней (с 22 по 29 октября) в результате засева облаков было получено 0,37 км3 дополнительной воды, что составило 7,4% от объема естественных осадков за этот период. Эффективность воздействий была подтверждена также результатами самолетных исследований эволюции микрофизических характеристик облаков.

Описанные выше результаты четырех оперативных проектов по ИУО, выполненных при участии автора в различных регионах мира – Якутии, Сирии, Иране и Португалии, свидетельствуют о высокой экономической эф­фективности разработанной в ЦАО технологии ИУО как средства для решения проблемы дефицита пресной дождевой воды.

В шестой главе приводится описание концепции и технических средств для выполнения работ по изменению условий погоды в мегаполисах методами активных воздействий. Основной задачей этих работ является рассеяние облаков и уменьшение или прекращение осадков на защищаемой территории. В зависимости от синоптической ситуации обычно применяются четыре метода воздействия: 1) рассеяние слоистообразной облачности; 2) инициирование преждевременного выпадения осадков из облачных систем на наветренной стороне от защищаемой территории путем засева этих систем с целью образования «тени» осадков, т.е. их прекращения или ослабления над заданной территорией; 3) интенсивный засев («перезасев») натекающей на защищаемую территорию осадкообразующей облачности с целью снижения в ней эффективности осадкообразования вследствие создания больших концентраций ядер кристаллизации и 4) разрушение мощных кучево-дождевых облаков динамическим способом для предотвращения ливней и гроз.



Pages:     | 1 |   ...   | 3 | 4 || 6 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.