авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 || 4 |

Методы усвоения данных в гидродинамических моделях циркуляции и их применения для анализа состояния и изменчивости мирового океана

-- [ Страница 3 ] --

Рис. 4. Сезонная и межгодовая изменчивость средней по объему кинетической энергии течений в НЭАЗО, (а)-сезонная, (б)-межгодовая. На рис. 4(б) сплошная линия (2)-лето, пунктир (1)-зима

На рис. 4 (а,б). показана сезонная и межгодовая изменчивость средней по объему кинетической энергии в слое 0-200м, причем отдельно для зимних и летних значений. Как и для теплосодержания и расходов тепла, виден рост значений энергии к концу 80гг и заметный минимум в районе 86-87 гг. Количество съемок при этом было одного порядка, т.ч. такая изменчивость не может быть объяснена только техническими причинами, а действительно наблюдается в природе

По положению максимума кинетической энергии можно определить положение фронтальной зоны и изучать ее изменчивость. Таким образом, изучалось положение фронтальной зоны на поверхности океана за сезон (зима-весна-лето осень), среднее за период 1982-1991 гг. Заметна волновая динамика, характерная для фронтов, а также некоторая размытость фронта в летне-осенний период и наоборот, усиление структуры основного потока в зимний период.

В пятом параграфе изучалась взаимосвязь исследуемых интегральных характеристик. Строились взаимно- корреляционные функции, спектральные функции, проводился факторный анализ временных рядов за указанный период-1982-1991 гг. Проведенный статистический анализ показал ряд связей между интегральными характеристиками в районе НЭАЗО. В частности, показано, что изменения доступной потенциальной энергии в сезонном ходе опережают изменения теплосодержания на 5-6 месяцев. Показано влияние теплосодержания на кинетическую энергию и объяснена физическая причина таких связей. Приводится также ряд других результатов.

В Главе 4 рассматривается применение предложенного метода к анализу состояния и динамики вод в тропической зоне Атлантики и Тихого океана. При этом использовались современные модели циркуляции океана (state-of-the art) MOM3, MOM4, COLA, EGMAM, HOPE и данные экспериментов PIRATA, TOGA-TAO, ARGO. В первом параграфе описывается выбор конфигурации, сеточного разрешения, начальных и граничных условий, а также стратегия проведения экспериментов для моделей MOM3 и MOM4, сгенерированных для тропической Атлантики. В эксперименте усваивались данные с буев PIRATA (Pilot Research Array in the Tropical Atlantic). Данные с 11 уровней от поверхности до 500 м интерполировались в узлы модели по вертикали.

Во втором параграфе исследуются свойства модельного термического поля океана после усвоения данных. Показывается, что в результате усвоения дисперсия разности между наблюдениями и модельным полем уменьшается, дисперсия прогноза модельного поля на сутки вперед (т.е. разности прогностического поля на сутки вперед и наблюдений, сделанных в этот момент) падает со временем и скорректированные профили температуры становятся ближе к реально наблюдаемым температурным профилям.

 Поведение дисперсии ошибки модели, осредненной по слою 0-500м относительно-155

Рис. 5. Поведение дисперсии ошибки модели, осредненной по слою 0-500м относительно наблюдений в течение марта 1999г. Верхняя кривая-контроль, посередине - ошибка прогноза на сутки вперед, внизу - ошибка анализа. Ось Х-время (дни)

Рис. 6. Термические профили в т. 20з.д. 0с.ш., март 1999 г. Открытые кружки - контроль, черные кружки - усвоение, белые квадраты-наблюдения. Ось Х - градусы Цельсия.

Изучается также пространственное влияние усвоения на поля температуры, их коррекция в пространстве.

В третьем параграфе рассматривается задача инициализации - восстановления начального поля, стартуя с которого можно наилучшим образом воспроизвести наблюдаемые значения. Метод инициализации изложен выше, в главе 2 §7; наблюдаемые данные брались из Атласа Левитуса за 1999г. Как и в параграфе 2 использовалась модель МОМ3, данные по атмосфере из архива NCEP/NCAR. В параграфе 3 показано влияние данных с трехдневной задержкой и оценена разность между текущим усвоением (коррекцией) и усвоением, сделанным с трехдневным лагом.

В четвертом параграфе исследуется влияние усвоения данных по температуре с буев на динамические характеристики, получаемые по модели. Понятно, что в результате изменения поля температуры изменяются все согласованные с этим полем модельные характеристики, как наблюдаемые непосредственно, так и ненаблюдаемые. В частности, модель продуцирует после усвоения новое поле скорости. В диссертации приводятся расчеты поля скорости до и после усвоения и эти расчеты сравниваются с аналогичными расчетами, сделанными независимо в Geophysic Dynamic Laboratory (USA) и взятыми нами с сайта GFDL (www.gfdl.gov). Из этих результатов видно, что влияние усвоения в нашей схеме существеннее, амплитуда течений увеличивается сильнее, но знак и направления изменений совпадают. Кроме того, следует отметить влияние усвоения также в том, что течения после усвоения на поверхности океана в предлагаемой схеме не проникают до берегов Африки, что следует непосредственно из модели, и что противоречит данным измерений. В этом же параграфе рассматривается задача настройки параметров на примере той же модели. Исследуется чувствительность стандартной модели гидродинамики к возмущениям плотности, если делается замена плотности , где - плотность после усвоения, - исходная плотность и - динамическая добавка, получаемая в результате усвоения. В результате получается система уравнений для добавочной скорости, отвечающей дополнительной поправке плотности. Эта дополнительная скорость может быть аналитически и численно определена и сглажена стандартными методами. В работе приводятся расчеты, сделанные по данной схеме.

В пятом параграфе приводятся расчеты по модели HYCOM с усвоением данных наблюдений в океане методами параллельного программирования. Использованы те же схемы усвоения, что и ранее, но специфика задачи состоит в том, что весь регион разбит на подобласти, в которых расчет происходит независимо. При усвоении данных в океане приходится передавать информацию из одной подобласти в другую, что приводит к необходимости модифицировать методы усвоения. На рис. 7 показана схема разбиения региона Атлантики на подобласти

 Схема разбиения региона исследования на подобласти при параллельном расчете -161

Рис. 7. Схема разбиения региона исследования на подобласти при параллельном расчете

В этом параграфе проводятся расчеты характеристик полей по предложенной схеме усвоения и данным эксперимента АРГО. Проводится также сравнение предложенного метода с другими популярными схемами усвоения, в частности схемой расширенного фильтра Калмана (EKF) и схемой объективного анализа (OI), также известного как схема статистической интерполяции. Результаты моделирования сравниваются также с данными наблюдений, независящих от усвоения. Изучались расчеты по 4-м схемам - контроль, с усвоением по методу оптимальной интерполяции, по методу Калмана и по предлагаемому методу. Из этих результатов следует, что модель без усвоения завышает значения температуры воды на поверхности, например, изотерма 27°С проходит гораздо южнее аналогичной изотермы в других схемах. В расчетах (в) и (г) гораздо лучше выражена синоптическая изменчивость, особенно хорошо это видно в северной части расчетной области. Есть и другие особенности, обращающие на себя внимание. Кроме того, в работе показываются независимые от усвоения поля поверхностной температуры воды, взятые из Атласа Рейнольдса ( http://www.noaa.gov ) Показано, что усвоение данных действительно приближает модельные расчеты к наблюдаемым величинам.

Сравнивалось качество методов. Метод сравнения основывался на поведении ошибки прогноза на сутки вперед, сделанного с начальных полей, построенных с помощью различных схем усвоения, а также сравнивалось поведение анализируемых профилей температуры и солености в тех точках, где есть наблюдения. Сравнение методов в точке, где усваиваются данные наблюдений, безусловно, свидетельствует в пользу изучаемого метода. На рис 8 показаны профили температуры (справа) и солености (слева) в точке с координатами 15°з.д., 5°с.ш., где усваивались данные АРГО. Данные показаны темными кружками, а модельные кривые – различными линиями: черная сплошная - контроль, черная пунктир - OI, пунктир – EKF, тонкая сплошная - предлагаемый метод. Видно, что наблюдения лучше ложатся именно на последнюю кривую.

Рис. 8. Наблюдения и модельные кривые в точке в координатами (15°в.д, 5°с.ш.)

В шестом параграфе приводятся результаты по усвоению данных ТОГА-ТАО в модель НОРЕ (Hamburg Ocean Primitive Equation Model), разработанной в Метеорологическом Институте им. М.Планка (Германия). Особенностью конфигурации данной модели является ее неравномерная сетка, с частым разрешением в районе Северной Атлантики и достаточно грубым разрешением в тропической зоне Тихого океана, что требует применения метода усвоения для компенсации недостатков модельного воспроизведения динамики океана. В этом параграфе применялась схема климатической коррекции, описанная в Главе 2.. Данные по температуре с буев интерполировались в уровни модели, и применялась вышеописанная схема усвоения.

Показано, как изменялись профили температуры воды после усвоения и как при этом выглядели чисто модельные профили (т.е. контрольный расчет без усвоения) за каждые 2 месяца 1997г, начиная с января. Расчеты сделаны в точке с координатами 0°с.ш., 100°з.д. Из этих расчетов хорошо видно, что в схеме климатической коррекции со временем скорректированные профили приобретают физически оправданную структуру и действительно исправляют чисто модельные недостатки, хотя в начале расчетов эти профили близки. На рис 9. приводится разница между скорректированным и модельным полями на конец усвоения на горизонте 50 м.

 Разность между скорректированным и чисто модельным полями на конец усвоения-165

Рис. 9. Разность между скорректированным и чисто модельным полями на конец усвоения (уровень 50м)

Интересно сравнить эту разность с рис. 1, где использовались та же модель и те же данные, но схема усвоения была принципиально другой, чисто искусственной. Видно, что рис 9 отражает реальную физику, лежащую в основе ковариационных связей, используемых при усвоении данных наблюдений в океане.

В Главе 5 рассматриваются задачи формирования начальных полей в океане с помощью методов усвоения и анализа прогностических экспериментов в совместных моделях «океан-атмосфера», стартующих с этих начальных условий. Такого рода задачи очень важны и интересны для построения как средне - и долгосрочных прогнозов погоды и климата, так и изучения различных сценариев климатических изменений.

В первом параграфе изучается проблема замыкания теплового баланса в выделенной зоне океана – Ньюфаундленской ЭАЗО. Задача ставится следующим образом: требуется посчитать модельные расходы теплосодержания в выделенной зоне океана скорректированными методами усвоения данных наблюдений в течение заданного периода времени и сравнить их с известными расходами тепла (явного и скрытого) за тот же период. Расчет потоков между океаном и атмосферой осуществляется по стандартным балк - формулам. Для расчетов использовалась модель, описанная в Главе 3, метод усвоения с ковариационной функцией, заданной формулой (обозначения см. выше), и данных съемок НИСП ГОИН, эксперимент Ньюфауэкс-88. В результате расчетов было показано, что расчеты баланса тепла удовлетворительно (точность около 10%) замыкаются в выделенной подобласти НЭАЗО, характеризуемой отсутствием сильных внешних течений (малоадвективной зоне), и недостаточно точно (ошибка порядка 30%) во всей области.

Во втором параграфе рассматривалась задача выбора расчетной области и начальных условий в Тропической Атлантике для последующих прогностических экспериментов с совместной моделью СОLA (Centre Ocean-Land-Atmosphere, Maryland, USA). Начальное поле строилось после проведения эксперимента Spin Up отдельно с моделью океана, последовательного форсинга сначала климатической (данные NCEP/NCAR) а затем реальной атмосферой – реанализ полей ветра и потоков тепла (данные

университета Флориды), и анализ, а затем вычитание наблюдаемого и модельного трендов, как это видно на рис. 10.

Рис. 10. Средняя по области разность аномалий наблюдаемой и модельной ТПО

После этих действий проводилось усвоение данных(ТПО и данных PIRATA) и строились начальные поля ТПО, которые сравнивались с наблюдаемыми (Рейнольс). Изучалась разность аномалий (поля минус среднее) до и после коррекции.

В третьем параграфе построенные поля ТПО задавались в качестве начальных в совместную модель, и проводился прогностический эксперимент на 1, 2, 3, 6 и 12 месяцев. Результаты прогноза сравнивались с данными наблюдений (Рейнольдс) а также с инерционным прогнозом. Для оценки качества прогноза вводились характеристики

и ), где

-соответственно модельная и наблюдаемая аномалии, а n — число точек в расчетной области. Были проведены 20 прогностических экспериментов. В работе анализируются их результаты. Например, показано, что в среднем модельный прогноз лучше инерционного, но в 6 случаях из 20 было наоборот. Проанализированы случаи, когда модельный прогноз был хуже инерционного, и дано объяснение некоторых особенностей данного явления.

В четвертом параграфе строятся прогностические значения температуры, и дается их достоверность для глубокого океана. Строится модельный прогноз с усвоением данных океана и без усвоения, и эти прогнозы сравниваются с реальными наблюдениям, именно, данными по температуре с буев PIRATA. Качество прогноза оценивается по формуле

, где -наблюдения в точке (местоположении буя) с индексом i, -прогностическое значение модели. Прогностические значения сравниваются с контрольными величинами, а также со значениями модели, посчитанными непосредственно после усвоения (анализ). На рис. 11 показаны дисперсии контроля (вверху), прогноза (средняя кривая) и анализа (внизу). Если усвоение прекратить на 15 день, то пунктиром показано поведение кривой после остановки усвоения.

Рис. 11. Поведение дисперсии прогностической ошибки. Вверху - на 40 м, внизу на 500м

Из этих кривых следует, что прогноз на поверхности краткосрочен, менее чем через 2 недели океан «забывает» те начальные условия, что были в основе данного прогноза и выходит на чисто вынужденное решение. Наоборот, в глубине океана инерция велика, и если вначале усвоение даже ухудшает прогноз, то в конце поведение прогностической кривой с усвоением заметно лучше, чем контрольной кривой.

В пятом параграфе изучается чувствительность модели НОРЕ – ЕСНАМ к возмущению начальных условий в океане, вызванному усвоению данных ТОГА-ТАО. По предложенной схеме проводится усвоение в тропической зоне Тихого океана, и затем модель стартует с новых начальных условий. Проводятся прогностические расчеты на 1, 2, 3, 6 и 11 месяцев. Расчеты проводятся как для усвоения всех данных ТОГА, так и по подобластям. Таким образом проводятся т.н. ансамблевые эксперименты, когда строится ансамбль начальных состояний, и для каждого из начальных состояний проводится интегрирование модели на заданный период. В работе показываются, какие регионы локально чувствительны к возмущению в тропической зоне Тихого океана, как именно глобально передается возмущение, насколько верхние слои океана более восприимчивы к возмущениям, чем глубинные. Анализировались причины и последствия такой реакции. Конкретно, показано, что сигнал на поверхности океана передается глобально, наиболее чувствительны к возмущениям т.н. энергоактивные зоны океана, кроме того, знак аномалии меняется примерно через 10-11 месяцев, т.е. первоначально положительной аномалии в тропической зоне Тихого океана через 10-11 месяцев соответствует отрицательная аномалия в этой же области. Этот результат находится в хорошем согласии с теорией El Nio [9] и данными наблюдений.

В Заключении работы еще раз формулируются положения, выносимые на защиту и приведенные выше в пункте «научная новизна.». Кроме того, в Заключении обсуждается возможности усвоения наблюдаемой информации, которая не исследовалось в данной работе. Это и данные альтиметрии, и данные химических трассеров, и данные акустических датчиков, и ряд других возможностей. Все эти наблюдения в принципе подходят под теорию, предлагаемую в настоящей работе, однако естественно имеют свою специфику. В Заключении обсуждается, какие именно модификации следует сделать, чтобы вовлечь данные альтиметрии, и спутниковые данные ТПО и усвоить их совместно с данными температурных и соленостных профилей. Это тема будущих исследований.

Основные результаты работы.



Pages:     | 1 | 2 || 4 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.