авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 | 4 |

Методы усвоения данных в гидродинамических моделях циркуляции и их применения для анализа состояния и изменчивости мирового океана

-- [ Страница 1 ] --

На правах рукописи

Беляев Константин Павлович

Методы усвоения данных в гидродинамических моделях циркуляции и их применения для анализа состояния и изменчивости Мирового океана

Специальность 25.00.28 – Океанология

Автореферат

диссертации на соискание ученой степени доктора физико-математических наук

Москва – 2011

Работа выполнена в Учреждении Российской академии наук Институте океанологии им. П.П. Ширшова РАН, г. Москва

Официальные оппоненты:

Доктор физико-математических наук, профессор

Залесный Владимир Борисович,

Учреждение Российской академии наук, Институт

вычислительной математики РАН

Доктор физико-математических наук

Катцов Владимир Михайлович,

ГУ Главная геофизическая обсерватория им. А.И. Воейкова

(ГГО)

Доктор физико-математических наук,

Рубинштейн Константин Григорьевич,

ГУ Гидрометеорологический научно-исследовательский центр

Российской Федерации (ГУ Гидрометцентр России )

Ведущая организация:

Московский физико-технический институт (государственный университет)

Защита состоится « » на заседании Диссертационного Совета Д 002.239.02 при учреждении Российской академии наук Институте океанологии РАН по адресу Москва 117997, Нахимовский проспект, 36.

С диссертацией можно ознакомиться в библиотеке Института океанологии им. П.П. Ширшова. РАН.

Автореферат разослан « »

Ученый секретарь Диссертационного совета Д 002.239.02

Кандидат физико-математических наук А.И. Гинзбург

Общая характеристика работы

Актуальность темы диссертации. Задача наилучшим образом совместить результаты численного и/или аналитического моделирования и полученные независимо от модели данные наблюдений получила в литературе название задачи оптимального усвоения данных или просто задачи усвоения. Усвоение данных является неотъемлемым элементом построения прогностических моделей океанской циркуляции для различных приложений – от оперативной океанографии до задач прогнозирования климата. Кроме того, усвоение данных – необходимый элемент модельных экспериментов по созданию долговременных реконструкций океанской циркуляции. При современном уровне развития океанского моделирования достоверность воспроизведения циркуляции (как региональной, так и глобальной) существенно зависит как от особенностей формулирования самой модели, так и от алгоритмов усвоения. В метеорологии и океанологии задачи усвоения стали активно рассматриваться с конца 1960-ых годов, а с конца 1990-ых годов и по настоящее время это направление переживает настоящий взрыв. Современные технологии, лежащие в основе прогноза погоды, просто невозможны без оперативных методов усвоения данных. В современной океанологии из-за резкого увеличения наблюдаемой информации и в связи с появлением мощных компьютеров, методов параллельного программирования ситуация близка к той, что имеет место в метеорологии. Без дальнейшего развития методов усвоения данных невозможно существенно улучшить сезонные прогнозы состояния океана и, следовательно, адекватно воспроизвести океанский сигнал в моделях климатической динамики. Все вышеперечисленное определяет актуальность темы исследования и позволяет классифицировать данный тип задач как фундаментальную научную проблему.

Основная цель работы – разработка, обоснование и экспериментальная апробация новых схем усвоения данных в океане и их сравнение с существующими и используемыми в настоящий момент методами. Детально эта цель разбивается на следующие пункты реализации:

1. Математическая и численная разработка нового метода усвоения, основанного на теории диффузионного приближения, и его реализация совместно с гидродинамической моделью циркуляции океана и/или совместной моделью циркуляции «океан-атмосфера».

2. Применение предложенного метода совместно с имеющимися и пополняемыми архивами данных измерений в океане и построение на основе предложенной схемы четырехмерных полей основных физических характеристик океана.

3. Изучение пространственно-временной изменчивости построенных полей и их сравнение с независимыми данными наблюдений в океане, а также полями, построенными по другим моделям и с помощью других методов усвоения.

4. Разработка единых критериев верификации и сравнения предлагаемых схем усвоения с аналогичными схемами и другими моделями. Коррекция начальных полей с помощью усвоения данных наблюдений и проведение прогностических и ансамблевых модельных экспериментов со скорректированными начальными условиями. Оценка чувствительности моделей к возмущенным таким образом начальным условиям.

Методы исследования и обоснования результатов в основном аналитические. Они основаны на теории случайных процессов, точнее ее раздела, относящегося к процессам специального вида – так называемым диффузионным процессам. В работе используется также теория параболических уравнений в частных производных, стандартные методы математической статистики и численного анализа. Вычислительные эксперименты проводились на суперкомпьютерах класса NEC и кластерах типа ИБМ «Регата». При усвоении данных наблюдений архивов PIRATA,TOGA-TAO, ARGO, многочисленных данных судовых съемок, в том числе судов погоды ГОИНа и исследовательских судов ИО РАН был предварительно проведен контроль качества данных методами многопараметрической статистики и кластерного анализа. Автором предложены оригинальные аналитические методы, используемые для сравнения имеющихся методов усвоения данных в океане, а также написаны и отлажены программы численного расчета для этих предложенных схем, реализованные на языках Fortran95, C++ с использованием языков SHELL,CSHELL и библиотек параллельного программирования MPI

На защиту выносятся следующие положения:

  • 1. Предложена новая схема усвоения данных, включающая цепочку – теория, методология, апробация, эксперимент, анализ результатов.
  • 2. Доказано аналитически и подтверждено экспериментально, что предложенные схемы усвоения вычислительно эффективны и численно реализуемы.
  • 3. Модельные физические параметры океана, скорректированные данными наблюдений по предложенной схеме, существенно уточняют количественные характеристики их состояния и изменчивости, являются физически непротиворечивыми, соответствуют качественно известным структурам.
  • 4. Аналитически показано, что предложенная схема частично обобщает имеющиеся и используемые в настоящий момент методы усвоения, в частности, схему объективного анализа и расширенный фильтр Калмана.
  • 5. Аналитически разработаны и численно реализованы методы усвоения для двух отдельных случаев – схемы оперативного усвоения данных в океане и схемы климатической коррекции.
  • 6. Показано на многочисленных экспериментах в тропической зоне Атлантики, тропической зоне Тихого океана, в средних широтах Атлантики Северного и Южного полушарий, что в результате усвоения существенно улучшается модельная структура термохалинных полей океана, воспроизведение верхнего квазиоднородного слоя, трехмерная структура течений. Также показано соответствие модели после усвоения полученным независимо данным наблюдений.
  • 7. Предложены методы сравнений различных схем усвоения данных океана для одинаковой базы данных, разработан соответствующий аналитический аппарат и показано, что изучаемая схема не уступает имеющимся аналогичным методам, а в ряде случаев их превосходит.
  • 8. Разработаны специфические алгоритмы схемы усвоения данных в океане для параллельных вычислений, которые применены для моделей мелкой воды, в частности, для модели HYCOM (Университет Майами, США).

Научная новизна работы. При решении задач усвоения рассматриваются две основные группы методов. Первая группа получила название "вариационных" или "функциональных" методов. Современная версия этого метода известна под аббревиатурой 4-d var. Подробно эта схема описана в целом ряде работ [1–2]. Задачи усвоения в "вариационном" методе сводятся к решению обратных задач и минимизации определенных заданных функционалов. Математическая теория обратных задач в общем случае не разработана, и даже в тех случаях, когда теоретически это решение известно, его практическое применение сталкивается с определенными и весьма немалыми трудностями. Отметим в литературе работы академика Г.И. Марчука и его учеников [3], специально посвященные этой теме.

К другой группе методов решения задач усвоения относятся т.н. динамико-стохастические модели, в которых неизвестная функция представляется в виде модельного поля и стохастического шума с известными характеристиками. Искомое решение в этом случае ищется как оптимальная оценка, или в терминологии, принятой в теории случайных процессов, как оптимальный фильтр, который строится по данным модели и наблюдений. Теоретически этот подход начал разрабатываться в начале ХХ века после работ Н. Винера [4] и А.Н. Колмогорова [5], затем получил развитие в работах Калмана [6], и др., например [7]. Это направление, основанное на современной версии фильтра Калмана, активно развивается как в теоретическом, так и в практическом аспектах.

В настоящей работе предлагается, обосновывается и применяется новый метод усвоения данных в океане, основанный на этой схеме, однако имеющий ряд существенных отличий от традиционной схемы фильтра Калмана. Метод значительно проще по реализации, не требует больших вычислений, строго математически обоснован. Показано также, что уравнения Калмановского фильтра являются частным случаем предлагаемого автором метода при некоторых дополнительных условиях, именно малых интервалах между двумя последовательными усвоениями.

В работе также проводится сравнение с другими методами усвоения для одних и тех же данных наблюдений в океане. Предлагаются и обосновываются критерии таких сравнений. Показывается, что в рамках данных критериев предложенный метод не уступает и в ряде случаев превосходит другие методы.

Используя предложенный метод, на основе имеющихся и модифицированных автором гидродинамических моделей и доступных баз данных наблюдений, таких как АРГО, ТОГА-ТАО, ПИРАТА, а также имеющихся архивов данных Института океанологии им. П.П. Ширшова РАН автором строятся трехмерные поля характеристик в океане (температуры, солености, скорости течений и др.), изучается их временная и пространственная изменчивость и сравнивается с аналогичными характеристиками, полученными в других моделях и по другим ассимиляционным схемам.

Достоверность результатов и выводов определяется физической обоснованностью постановки задач, аналитическим методом доказательства предложенной схемы и анализом результатов многочисленных тестовых экспериментов. Поля физических характеристик полученных в результате усвоения количественно сравниваются с данными наблюдений, где это возможно. В частности сравниваются модельные и наблюдаемые профили температуры и солености, наблюдаемые и модельные поля поверхностной температуры воды, поля альтиметрии, ряд других характеристик. Анализ этих сопоставлений вполне убедительно показывает физическую состоятельность предложенных схем.

Практическая значимость работы. Усвоение данных в современной океанологии, метеорологии и климатологии применяется для построения согласованных, то есть сбалансированным между собой в смысле массы, энергии и импульса характеристик в океане и атмосфере. Это нужно как для анализа текущего состояния океана и атмосферы, так и для прогностических оценок, получаемых с помощью моделей циркуляции. Кроме того, построенные таким образом поля используются в качестве начальных условий в моделях для изучения климата, его изменчивости и антропогенного воздействия. Предложенные автором схемы и программы использовались и используются в проектах BLUELINK, Бюро метеорологии Австралии, проекте FAPEX для оперативных прогнозов в зоне добычи нефти на шельфе Бразилии. Предложенные схемы усвоения могут также быть использованы в проектах по изучению климата, в частности для задания начальных условий и верификации конкретного сценария.

Апробация работы. Результаты работы докладывались на многочисленных конференциях и семинарах в России и за рубежом. В частности, на семинарах Института океанологии РАН, семинарах Гидрометеоцентра РФ, семинарах Института вычислительной математики РАН, физико-техническом институте, в Вычислительном центре РАН, Главной геофизической обсерватории (ГГО) Гидрометслужбы России, в Центре изучения взаимодействия океана и атмосферы, университета Флориды (COAPS, Tallahassee, USA), в институте метеорологии университета Западного Берлина (Freue Universitt, Berlin, Germany), в Королевском институте метеорологии Нидерландов (KNMI, Utrecht, Nederland), в Институте метеорологии им. М. Планка, Гамбург, (MPIMET, Hamburg, Germany), Центре по изучению климата в Потсдаме (Climatforchungzentrum, Potsdam, Germany), в Бюро Метеорологии Австралии (BMRC, Melbourne, Australia), в Центре по метеорологии и изучению климата Бразилии (CPTEC, Sao Paulo, Brazil), в Национальной Лаборатории по численным методам Бразилии (LNCC, Petropolis, Brazil), в Центре геофизических исследований Перу (GEO, Lima, Peru). Отдельные результаты докладывались на Всероссийских и международных конференциях, например: на конференциях по вычислительной математике и параллельному программированию в Абрау-Дюрсо, 2005-2010гг, на международных конференциях WSEAS (Lisbon 2005, Gold Coast 2007), Intercomparison 4d-var-EnKF (Buenos Aires 2008), SIAM (Leiptzig 2009), EGU (Vienna 2010).,AGU (Foz de Iguassu,2010), GODAE (Tokio, 2010).

Структура работы. Диссертация состоит из введения, 5 глав, заключения и списка литературы. Дополнительно в диссертации содержатся приложения, в которых приводятся математические доказательства используемых в тексте утверждений. Список используемой литературы включает 87 наименований.

Публикации и личный вклад автора. По теме диссертации с 1990 г. по настоящее время опубликована монография, 23 статьи в российских и зарубежных рецензируемых журналах, входящих в списки цитируемых баз данных Scopus, Web of Science, список научных журналов ВАК, 15 работ в тематических сборниках.

В совместных работах по теме диссертации автору принадлежит постановка задачи, идея и алгоритмы ее решения. Также подавляющее большинство используемых программ написано персонально автором, им же проведены основные численные эксперименты.

Основное содержание работы

Во Введении рассматривается история задач усвоения данных, появление которых связано с задачей численного моделирования прогнозов погоды и изменений климата. Основное внимание уделяется методам усвоения в океанологии, предложенным теоретически и применяемым на практике со второй половины 20 в и до наших дней. Излагаются цели усвоения, проблемы, связанные с методами усвоения и их практическим реализациям. Показывается место настоящей работы в данном направлении исследований, ее теоретическая и практическая новизна.

В Главе 1 подробно излагаются основные методы усвоения, связанные с динамико-стохастическим подходом и задачами статистического оценивания и фильтрации. В § 1 рассматривается пример задачи релаксации. В § 2 рассматривается общий метод объективной интерполяции (или статистической интерполяции). Он выглядит следующим образом:

Пусть неизвестный сигнал (переменная) наблюдается в точках , и пусть значения наблюдений будут . Считается, что наблюдения представляют собой реализации значения неизвестной случайной переменной, т.е. случайные величины с некоторыми распределениями, вообще говоря, зависимые между собой в вероятностном смысле. Наиболее распространенным является предположение, что эти величины имеют гауссово совместное распределение. Ищется оценка неизвестного поля , оптимальная в следующем смысле:

, (1)

где любая оценка неизвестного поля . Символом обозначается среднее в смысле распределения (ансамбля) значение случайной величины .

Оптимальной линейной оценкой неизвестной величины в смысле (1) в произвольной точке области будет оценка, задаваемая формулой

, (2)

Предполагая, что , где -ошибка моделирования в точке , при условии из (1) и (2) получается соотношение

. (3)

В формуле (3) есть ковариационная функция совместного распределения ошибок в точках , т.е. , а есть ковариационная функция совместного распределения ошибок в точках , т.е. .

Решение уравнения (3) ищется относительно весовых коэффициентов при известных значениях функций и при всех . В общем случае вектор заданной размерности r, функции и -соответственно матрицы размерности , и поскольку, то, соответственно, весовые коэффициенты также матрицы размерности . Система уравнений (3) имеет единственное решение тогда и только тогда, когда матрицы и полного ранга, что эквивалентно условию линейной независимости векторов .

В схеме объективного анализа ковариационные функции и считаются заданными, а сами наблюдения известными точно, без «помехи» или «шума». В диссертации исследован случай, когда ковариационные функции задавались равными , где N - число усваиваемых наблюдений, а – расстояние, измеряемое в единицах сетки между точками . Через обозначено значение модели в точке наблюдения . Если расстояние между точками или превышало выбранный радиус отсечения, то все ковариации полагались равными нулю.



Pages:   || 2 | 3 | 4 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.