авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 3 | 4 || 6 |

Метан в морях восточной арктики

-- [ Страница 5 ] --

Моделируя подводную мерзлоту, российские геологи традиционно используют модель, основанную на представлениях об изменении положения береговой линии. Это изменение определяется тремя основными факторами: гляцио-эвстатическими колебаниями уровня Мирового океана (глобальный фактор), тектоническими движениями дна и побережий, а также термоабразией берегов (локально-региональные факторы, Соловьев и др. 1987). Развитие криолитозоны Арктического шельфа в позднем кайнозое определялось в основном неоднократной сменой субаэральной и субаквальной обстановок. Заключительный этап развития криолитозоны Арктического шельфа начался со времени последней трансгрессии 18-19 тыс. лет назад. Он характеризуется постепенной сменой субаэральной обстановки на субмаринную и деградацией (частичной или полной) подводной мерзлоты. При изменении термобарических условий подводная мерзлота проходит в три этапа: на первом этапе, длительностью от сотен до нескольких тысяч лет, подводная мерзлота претерпевает трансформации, направленные на выравнивание температуры в ее пределах с новыми граничными условиями, которыми являются температуры фазовых переходов морской воды различной солености. На втором этапе мерзлая толща начинает деградировать снизу - за счет отепляющего влияния глубинного теплового потока и сверху – за счет растворяющего влияния морской воды. На третьем этапе происходит замещение мерзлых толщ немерзлой криолитозоной (Соловьев и др. 1987).

В разделе 5.2 описан алгоритм модели, разработанный российскими учеными, основанный на представлениях о гляцио-эвстатических колебаниях уровня Мирового океана. Колебание уровня океана оказывает влияние на формирование термобарической, в частности, мерзлотной обстановки на шельфе. Палеогеографический сценарий для последних 400 тыс. лет был восстановлен на основе реконструкции климата по палеоклиматическим данных, полученным из ледяных кернов. Кривая палео-температур отражает смену климатических циклов и колебания уровня океана в ходе трансгрессиий/регрессиий. В алгоритме, предложенном Романовским и др. (1998; 2000; 2001; 2004; 2005), который является наиболее полным, были использованы кривые гляциоэвстатических колебаний для временных отрезков от 400 тыс. лет до 120 тыс лет, от 120 тыс. лет до 20 тыс. лет, и от 20 тыс. лет до настоящего времени.

Важнейшими факторами при моделировании современного состояния подводной мерзлоты являются геотермические условия Арктического шельфа и температура придонного слоя воды, на основании которых определяют глубину проникновения годовых колебаний температуры, коэффициенты температуропроводности и теплопроводности. На шельфе МВА геотермические исследования проводились в районе Новосибирских островов и на шельфе Восточно-Сибирского моря. В результате этих исследований плотность глубинного теплового потока была установлена в пределах от 64 мВт/м2 до 124 мВт/м2. Тем не менее, при моделировании традиционно используются более консервативные величины предполагаемого потока в пределах от 40 до 75 мВт/м2. Среднегодовые температуры придонного слоя воды основывалась на данных натурных наблюдений и принималась в пределах от -0.5С до -2.0С. При этом предполагалось, что минерализация поровой воды подводной мерзлоты соответствует минерализации пресного осадка и что таяние подводной мерзлоты под влиянием слабо-отрицательных температур морской воды невозможно. Дальнейшее улучшение алгоритма привело к включению температуры фазового перехода в системе мерзлые породы/талые породы равной -2С (Романовский и др., 2005), а также к учету в алгоритме модели неравномерности протекания трансгрессии в зависимости от неотектонического строения шельфа, особенностей формирования и разрушения ледового комплекса, формирования озерного термокарста, а также термоабразии берегов (Гаврилов и др., 2006).

В разделе 5.3 анализируются работы, направленные на дальнейшее развитие принципов, заложенных российскими учеными, а также на улучшение понимания динамики и современного состояния подводной мерзлоты. Так, в работах Taylor и др. (1996), было показано, что минерализация мерзлого грунта играет определяющее значение в развитии процессов термокарста. В работах Хименкова и Брушкова (2006) было показано, что степень минерализации поровой воды осадка не только определяет температуру фазового перехода мерзлого грунта в талое состояние, но также определяет объемную долю незамерзшей воды в составе мерзлого грунта. В дальнейших работах было показано, что при промерзании зернистых засоленных грунтов (соленость 2 г/л) незамерзшая вода накапливается в центре порового пространства, формируя канальцы в структуре замерзшего грунта (Arenson and Sego, 2006). Вместе с пузырьками воздуха, включенными в состав мерзлых пород, система канальцев незамерзшей воды создает своеобразную транспортную сеть, обеспечивающую движение жидкостей и углеводородов внутри мерзлоты. Данный феномен был описан в работе (McCarthy et al., 2004), где авторам удалось заснять на камеру движение углеводородов внутри мерлого грунта (песчаник и гравий) на Барроу (Аляска, США).

Амплитуды годовых колебаний температур в арктических регионах максимальны, поэтому мерзлые грунты подвергаются разрушающему влиянию соответствующих сжатий и расширений (thermal contraction), что приводит к локальным разрывам сплошности мерзлых пород и формированию обширной сети трещин и расщелин (Cramer and Franke, 2005). Этот механизм объясняет формирование клиновидных форм льдообразования, широко распространенных на арктическом побережье (Романовский, 1974; Фартышев, 1993; Григорьев и Куницкий, 2000). С точки зрения цикла СН4, возможность существования разветвленной сети трещин в структуре мерзлых пород означает наличие благоприятных условий для формирования путей миграции газов и газосодержащих геофлюидов (Biggar et al., 1998).

Поскольку мелководный шельф МВА выполняет роль эстуария Великих Сибирских рек, среднегодовые температуры воды в мелководных районах шельфа значительно отличаются от температур в глубоководной части морей, достигая на достаточно обширных территориях слабо-положительных значений. Мощное дополнительное отепляющее воздействие на мерзлоту могут также оказывать водные горизонты дренажной системы мерзлоты. Контакт c относительно теплыми водами над-, внутри- и подмерзлотных горизонтов и их проникновение в мерзлотные горизонты является фактором, ускоряющим процесс деградации мерзлоты. Было показано, что интенсивная деградация подводной мерзлоты происходит и в районах, находящихся вне отепляющего влияния рек. Достоверным подтверждением вышесказанного являются результаты бурения, выполенные к западу от дельты реки Лены в районе, удаленном от влияния рифтовых зон. В одном из кернов, полученном на расстоянии 12 км от м. Мамонтов Клык, температура мерзлоты начиная с глубины 10 м была зарегистрирована в пределах от 1.0С до 1.4С, что соответствует температурам фазовых переходов минерализованных осадков в немерзлое состояние; в результате до глубины более 70 м были обнаружены талые осадки (Rachold et al., 2007). Кроме того, было показано, что крышка подводной мерзлоты имеет тенденцию к заглублению с ростом глубины водного столба, что также подтверждает ранее высказанное мнение об эффективном тепловом воздействии морской воды (Григорьев, 2008).

Отдельное внимание было уделено изучению дестабилизирующего влияния на подводную мерзлоту разрушающихся мелководных шельфовых газгидратов. Согласно термобарическим условиям, формирование зоны стабильности шельфовых газгидратов с необходимостью происходит при образовании многолетне-мерзлых пород во время осушения шельфа МВА. Этому способствует благоприятная обстановка гидратоносности, которая обуславливается многокилометровой мощностью осадочного чехла, относительной стабильностью осадочных бассейнов, высокой долей органического углерода в осадках, а также может быть связана с восходящей миграцией газа по разломам и обогащением придонных отложений диагенетическим газом (Соловьев и др., 1987). После затопления континентальной окраины в период трансгрессии, газгидраты перемещаются в нестационарную термобарическую обстановку, поскольку происходит резкое изменение температурных условий (увеличение температуры на 7-12°С), что является более значимым фактором по сравнению с ростом давления за счет повышения высоты водного столба. В результате, стабильность газгидратов нарушается и верхняя граница зоны стабильности газгидратов постепенно смещается вниз (Романовский и др., 2005).

Газ из разрушенных газгидратов накапливается между нижней границей мерзлоты и верхней границей зоны стабильности газгидратов (Delisle, 2000). Таким образом формируется газовый фронт, который представляет собой мощное скопление газа, находящегося под давлением, что позволяет ему двигаться как в вертикальном, так и в горизонтальном направлении (Рис. 18). В результате тектонического движения плит, сейсмичности, а также под давлением восходящего газового фронта могут происходить разрывы сплошности мерзлоты и формирование каналов утечки газа. Вслед за утечкой газа и последующим изменением давления происходит осадка мерзлого грунта, что регистрируется как эндогенная сейсмичность, которая, в свою очередь, способствует дальнейшей дестабилизации подводной мерзлоты и выходу дополнительных количеств газа (Osterkamp & Harrison, 1985).

Рис. 18. Результаты интерпретации сейсмических данных, подтверждающие формирование путей миграции газовых фронтов в донных отложениях МВА: а) латеральное движение газа; б) вертикальное движение газа (Shakhova et al., 2010).

В разделе 5.4 обсуждается алгоритм моделирования современного состояния подводной мерзлоты, улучшенный путем объединения идей российских и зарубежных ученых. Первостепенное внимание было уделено влиянию локально-региональных факторов (термокарст, сложное строение осадочных толщ, определяющее степень минерализации осадочных толщ и долю незамерзшей воды, присутствие/отсутствие ледового комплекса в составе осадочных толщ).

Предполагается, что в период, предшествующий затоплению и сопровождающий затопление на приморской равнине шло активное развитие процессов термокарста, сопровождавшийся формированием множества термокарстовых озер. Процесс затопления протекал в разное время с разной скоростью; наименьшие скорости сопровождали затопление прибрежных районов МВА. В работах Burn (2002) показано, что среднегодовые температуры таликов термокарстовых озер на момент их затопления могли варьировать в пределах от +0.5С до +4С. В ходе затопления одновременно с охлаждением осадочных толщ происходила их минерализация (Osterkamp, 1999). В результате в таликах затопленных озер могли создаваться условия для их дальнейшего развития после затопления.

Засоленные мерзлые породы считаются наиболее сложной из всех известных систем криолитозоны. По многим свойствам они занимают положение между мерзлыми и немерзлыми породами. Определяющее влияние на механические свойства грунтов оказывает незамерзшая вода, содержание которой определяется засоленностью, типом и температурой грунтов. Температура начала замерзания грунта при прочих равных условиях определяется засоленностью. Установлено например, что при засолении суглинистого грунта до 1.0% в диапазане температур от 2.8С до 6.5С содержание незамерзшей воды увеличивается на 22.3%, в результате чего температура начала замерзания грунта снижается до 3.0С (Брушков и Хименков, 2006).

 Результаты моделирования случаев А (а) и Б (б): А – донные отложения не-19

Рис. 19. Результаты моделирования случаев А (а) и Б (б): А донные отложения не минерализованы, геотермальный топок 50 мВт/м2; Б донные отложения минерализованы, геотермальный поток тот же (Шахова и др., 2009б).

Основные параметры модели, дополняющие существующий алгоритм модели, описанный в Романовский и др. (2005) включали: минерализацию осадка (35‰ для поровой воды морских осадков и 3‰ для поровой воды пресных осадков), долю незамерзшей воды в составе осадков в соответствии с кривой незамерзшей воды, представляющей собой функцию температуры для осадков разной минерализации; сложное строение осадочной толщи, включающей слои едомного комплекса на глубинах 0-15 м для случаев А и Б, и на глубинах 0-15 м, 50-65 м и 100-115 м для случаев В и Г. В ходе моделирования современного состояния подводной мерзлоты в проливе Дмитрия Лаптева были рассмотрены 4 возможных случая. Случай А воспроизводил граничные условия алгоритма модели, изложенные в работе (Романовский и др., 2005).

 Результаты моделирования случаев В (а) и Г (б): В – высоко-минерализованные-20

Рис. 20. Результаты моделирования случаев В (а) и Г (б): В высоко-минерализованные донные отложения всключают прослои низко-минерализованных отложений, геотермальный поток 50 мВт/м2; Г то же, но геотермальный поток 60 мВт/м2 (из Шахова и др, 2009б).

В ходе моделирования были воспроизведены результаты, полученные авторами данной работы, согласно которым в проливе Дмитрия Лаптева существует сплошная мерзлота толщиной в несколько сотен метров (600 м, Рис.19а). Случай Б воспроизводил граничные условяи случая А за исключением одного: минерализация донных отложений, за исключением верхних 15 м, были принята равной минерализации морских донных отложений (Рис. 19б). Случай В (Рис. 20а) воспроизводил условиях случая Б, за исключением минерализации верхних слоев донных отложений от 0 до 15 м, от 50 до 65 м и от 100 до 115 м, которые принимались состоящими из низко-минерализованных (пресные) осадков. Случай Г (Рис. 20б) воспроизводил условия случая В, однако тепловой поток был принят равным 60 мВт/м2. Для тестирования результатов моделирования были использованы данные бурения в проливе Дмитрия Лаптева (Рис. 21), двухлетние данные измерения концентраций растворенного СН4 в проливе Дмитрия Лаптева, а также данные измерений концентраций СН4 в приводном слое атмосферы (Рис. 12). Показано, что наличие в кернах осадочных слоев различной температуры, равно как и одновременное присутствие мерзлых пород и охлажденных пород, свидетельствует о сложной структуре осадочных толщ.

Устойчивое обнаружение аномально высоких концентраций растворенного СН4 в водном столбе в проливе Дмитрия Лаптева, в частности на тех станциях, которые были выполнены в наибольшей близости к юго-восточному побережью о-ва Большой Ляховский (именно там, где был обнаружен керн, полностью состоящий из немерзлых охлажденных пород), свидетельствует о возможности формирования сквозного талика в соответствии с данными моделирования (случай Г, рис. 20б), допускающей утечку СН4 из донных залежей.

Рис. 21. Данные бурения в проливе Дмитрия Лаптева (по Соловьев и др. 1987).

Равномерное распределение растворенного СН4 в водном столбе (глубина менее 9 м) без явно выраженного максимума и градиента концентраций, свидетельствует о преобладании пузырькового переноса СН4 в границах водного столба (Shakhova et al., 2010). Регистрация высоких концентраций СН4 в приводном слое атмосферы (до 6 ррм) является подтверждением залповых выбросов СН4 в атмосферу (Шахова и др., 2009 а,б). Таким образом было показано, что данные натурных наблюдений хорошо согласуются в результатами моделирования, полученными с использованием улучшенного алгоритма моделирования.

ЗАКЛЮЧЕНИЕ

В результате выполненной работы описано новое явление – широкомасштабная эмиссия метана из акватории МВА в атмосферу Арктического региона. На основе результатов многолетних комплексных исследований даны основные качественные характеристики этого явления, а также предложена методология оценки ежегодной эмиссии метана и оригинальные методы количественной оценки ее отдельных компонентов в МВА. Выполненные расчеты показали, что эмиссия метана из МВА соизмерима с эмиссией из остальных шельфовых морей Мирового океана, а значит, играет важную роль в современном цикле метана. Показано, что пространственное распределение метана отличается крайней мозаичностью и не корррелирует с распределением органического углерод в современных осадках, что свидетельствует о вовлечении в современный биогеохимический цикл метана из донных залежей, который поступает в водную толщу через постоянно существующие и/или временно формирующиеся пути миграции. Одним из таких возможных путей миграции могут быть сквозные талики, сформированные в результате деградации подводной мерзлоты под влиянием комплекса различных факторов, в числе которых впервые были учтены такие как минерализация осадков, содержание незамерзшей воды в структуре морзлого грунта, сложное строение осадочных толщ, включающих слои высоко- и низко-минерализованных осадков, а также влияние процессов термокарста, предшествующих затоплению шельфа МВА. Тестирование полученных результатов моделирования данными натурных наблюдений показало правомерность выбранного подхода. В условиях глобального изменения климата, который в Арктическом регионе проявляется как потепление, следует ожидать дальнейшего роста эмиссии метана из МВА. Поскольку шельф МВА чрезвычайно мелководен, значительная часть метана выбрасывается в атмосферу, что существенно увеличивает концентрации метана в приводном слое атмосферы, оказывая влияние на фоновые концентрации метана в атмосфере и, следовательно, на формирование Арктического максимума метана в атмосфере.

ВЫВОДЫ

1) МВА являются источником метана в атмосферу Арктического региона и важной составной частью морского цикла метана, поскольку ежегодная эмиссия метана в атмосферу Арктического региона из МВА соизмерима с суммарной ежегодной эмиссией метана из акватории всех морей Мирового океана.

2) Метан поступает в придонную воду из донных отложений не только в виде растворенного газа (диффузионный транспорт), но также и в форме пузырьков, о чем свидетельствует характер вертикального распределения концентраций в водном столбе, наличие областей экстремально-высоких концентраций; превышение зимних концентраций над летними, превышение поверхностных концентраций над придонными, а также гидро-акустические и геофизические данные, с помощью которых были зарегистрированы мощные выбросы пузырьков из дна в водную толщу.

3) Мощность современной эмиссии метана в МВА, а также ее будущий прирост, в основном зависит от степени вовлечения в современный биогеохимический цикл метана и органического углерода, накопленного в донных отложениях в предыдущие климатические эпохи. Вклады современной продукции в осадках, в водном столбе и латерального переноса из наземных источников не являются значимыми. Количественные характеристики современных потоков метана в МВА и их пространственно-временная изменчивость зависит от наличия газо-проводящих путей в структуре осадочной толщи.



Pages:     | 1 |   ...   | 3 | 4 || 6 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.