авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |

Научное обоснование и разработка технологии обогащения платинометальных руд зональных базит-ультрабазитовых комплексов в особых экологических условиях камчатки

-- [ Страница 4 ] --

Результаты лабораторных экспериментов по крупнокусковому тяжелосредному разделению и рентгенорадиометрической сепарации руды показали, что потери платины с легкими и малохромитовыми фракциями при предварительном выделении хромитового концентрата составляют до 42%, что подтверждает теоретические выводы, полученные в результате проведения минералого-технологических исследований, и не позволяет рекомендовать применение данных методов в технологической схеме. При разделении руды в магнитных полях выход платины в немагнитный продукт составил 38,9%, что также подтверждает теоретический прогноз и свидетельствует о нецелесообразности применения метода при обогащении платинометальных руд.

Эффективность прямого разделения руды на винтовом сепараторе типа MD Mineral technologies диаметром 350 мм оказалась низкой, так как, несмотря на большой выход концентрата (22,7%), в него было извлечено только 39,1% платины. Лабораторные эксперименты по извлечению крупных фракций платиноидов отсадкой с естественной и искусственной постелью показали, что для руд с высокими содержаниями платины, в крупнокусковой надрешетный и крупнозернистый подрешетный концентрат извлекается до 97% платины. Однако для руд с рядовыми содержаниями выделение крупнозернистых легких фракций с отвальным содержанием платины невозможно. В связи с необходимостью доизмельчения надрешетных легких фракций крупнозернистой отсадки и надрешетного крупнозернистого концентрата для дальнейшего обогащения в технологической схеме рекомендовано отдать предпочтение отсадке с искусственной постелью для возможности извлечения крупной платины при периодической сортировке материала постели. Лучшие результаты извлечения платины в гравитационные концентраты при перечистке надрешетного продукта основной отсадки достигнуты на концентраторе ИТОМАК-0,1 и винтовом шлюзе ВШ-350 (более 60%). Содержания платины в доизмельченных хвостах контрольной перечистки оказались близкими (0,14 г/т), что позволило рекомендовать использование одного из них в технологической схеме.

Оценка раскрытия включений тонкой платины проведена экспериментами по стадиальному доизмельчению хвостов концентрации с последующим их разделением на концентрационном столе СКЛ-2М. Установлено, что потери платины снижались по мере измельчения до содержания класса -0,074 мм на уровне 31,4%. Дальнейшее измельчение ухудшило разделение, что связано с переизмельчением платиносодержащих минералов и увеличением содержания шламов в пульпе.

Результаты лабораторных исследований подтвердили основные теоретические выводы, сделанные при проведении минералого-технологических исследований платинометальных руд, и позволили предложить технологическую схему проведения полупромышленных испытаний, которая включила в себя: 1) стадиальное дробление исходной руды крупностью -50 мм на щековой дробилке СМД-116 и комбинированной дробилке СМД-115 (малая щековая + валковая) до крупности -10 мм; 2) измельчение дробленой руды в стержневой мельнице; 3) первичная отсадка на отсадочной машине 2ОВД-1; 4) грохочение надрешетных продуктов отсадки и циркуляционных потоков второй стадии измельчения на вибрационном наклонном грохоте ГЖ-1 с плетеной сеткой квадратного сечения 0,48х0,48 мм; 5) двойную классификацию подрешетного продукта грохота на гидроциклонах диаметром 50 мм, обеспечивающих сброс тонких шламов; 6) доизмельчение класса +0,48 мм в шаровой мельнице МШР900х900 мм; 7) обогащение грубозернистых песков первой стадии классификации на винтовом шлюзе ВШ-500 и тонкозернистых песков второй стадии гидроциклонирования на винтовом сепараторе; 8) доводку концентратов винтовых аппаратов, а также подрешетных продуктов отсадки на концентрационных столах СКО-2 и СКО-0,5.

Главным достоинством испытанной технологической схемы стало получение весьма бедных отвальных хвостов и выделение значительной доли платины в богатые шлиховые концентраты, которые могут быть доведены до более высоких содержаний. Почти треть от исходного количества платины в пробе (27,3%) извлечено в продукты (2,9 кг), накопленные в постели отсадочной машины и выделенные из разгрузочного зумпфа стержневой мельницы и содержащие соответственно 864,27г/т и 2539,63г/т Pt. Значительное количество платины (19,7%) выделено при зачистке стержневой мельницы, в которой после испытаний осталось 46,87 кг промпродукта с содержанием 58,3г/т Pt. Более половины выделенной платины (55,7масс.%) оказалось в крупных фракциях +0,5мм, а массовая доля платины в классах крупности -0,1 мм, несмотря на значительное количество мелких и тонких зерен минералов МПГ (49,6%), составила только 3,4 масс.% (рис.8).

Рис.8. Распределение платины по классам крупности в гравитационном концентрате руд при измельчении в одну (0,5 мм) и две стадии (2,0 мм и 0,5 мм)

В целом технологическая схема прямого гравитационного обогащения платиносодержащих дунитов без предварительного выделения хромитового концентрата, с двухстадиальным измельчением и межцикловым выделением крупной фракции платиноидов, позволила из руды со средним содержанием 1,69 г/т Pt извлечь в богатый (1,8% Pt) гравитационный концентрат 87,9% платины. Дополнительно к этому 6,1% платины выделено в бедные гравитационные концентраты (14,1г/т Pt), а общие потери платины при выходе хвостов 99,26% от исходного объема руды составили только 6%.

Разработанная и апробированная в полупромышленных условиях технологическая схема обогащения платинометальных руд Гальмоэнанского массива предложена к внедрению при строительстве обогатительной фабрики, условная производительность которой определена владельцем лицензии на разработку (ЗАО «Корякгеолдобыча») в 5 млн. тонн руды в год (рис.9).

 Рекомендуемая качественно-количественная и шламовая схема обогащения-11

Рис.9. Рекомендуемая качественно-количественная и шламовая схема обогащения платинометальных руд зональных базит-ультрабазитовых комплексов

Расчет основных технико-экономических и финансовых показателей освоения платинометальных руд Гальмоэнанского зонального массива показал, что без затрат на решение проблем, связанных с особыми экологическими условиями Камчатки, полная себестоимость добычи и переработки 1 тонны платинометальной руды составит 694,1 рубля. Полная себестоимость производства 1 грамма платины оценивается в 475,4рубля. Чистая прибыль проекта за 10 лет эксплуатации месторождения составит 29 млрд.рублей.

Систематизация, типизация и оценка факторов, определяющих возможное негативное воздействие продуктов обогащения платинометальных руд зональных базит-ультрабазитовых комплексов на экосистемы лососевых нерестово-нагульных рек Камчатки

Обогащение платинометальных руд гравитационными методами предусматривает в технологической схеме значительный расход воды (около 3 м3 на тонну руды), что определяет необходимость строительства и эксплуатации в бассейнах прилегающих водотоков масштабных гидротехнических сооружений для её накопления и очистки. Важное рыбохозяйственное значение расположенных в зоне предполагаемого воздействия водных объектов оценивается суммарным потенциалом производства рыбопродукции в 1820 тонн биомассы ежегодно, что определяет необходимость проведения научно-обоснованного прогноза характера и масштаба изменения состояния экосистемы прилегающих лососевых нерестово-нагульных рек при организации масштабной переработки руд.

Основу проведения систематизации, типизации и оценки факторов возможного негативного воздействия продуктов переработки платинометальных руд представляют результаты многолетнего комплексного эколого-рыбохозяйственного мониторинга эксплуатации россыпных месторождений платины Сейнав-Гальмоэнанского горного узла. Правомерность применения принципа аналогии в данном случае определяется следующим: 1) разработка россыпей и рудного месторождения проводится в одинаковых условиях, на общей территории и в бассейнах тех же водотоков; 2) масштабы ведения горно-добычных работ сопоставимы по объему перерабатываемой горной массы (россыпи – до 2 млн.м3 песков; руды – 5 млн.т руды в год); 3) технология обогащения платиносодержащих песков и платинометальных руд основана на гравитационных методах обогащения, исключающих использование химических реагентов и требующих создания значительных технологических запасов воды.

На начало разработки россыпных месторождений ихтиофауна водных объектов горного узла включала в себя 11 видов рыб, среди которых наиболее массовыми являлись тихоокеанские лососи (горбуша, кета, нерка, кижуч и чавыча). Для оценки динамики техногенного изменения структурных особенностей естественных биомов в зоне действия горнодобывающего предприятия изучены семь полных возвратов лососей испытавших на пресноводном этапе жизненного цикла масштабное воздействие горно-добычных работ. Исследованиями установлено, что в последние годы разработки россыпных месторождений, несмотря на общее увеличение захода лососей в основной бассейн территории, численность подхода производителей на нерест в отдельные водотоки горного узла резко сократилась. Значительно уменьшилась плотность заполнения нерестилищ среднего и верхнего течения водотоков, расположенных непосредственно в зоне техногенного воздействия, что вызвало увеличение нагрузки и переполнение нерестилищ на приустьевых площадках. Зафиксировано отчетливое снижение численности и обеднение видового состава лососевой молоди и жилых рыб, а также изменение физиологического состояния большей части рыбного сообщества в зоне техногенного воздействия, в первую очередь, в связи с различными механическими повреждениями жабр. Значительные трансформации в водотоках горного узла претерпели структура и численность сообществ донных организмов, что определило активную миграцию рыбного населения в связи с обеднением кормовой базы. В целом, результаты многолетнего мониторинга свидетельствует о проявлении признаков деградации существующего водного сообщества, которые вызваны техногенной трансформацией среды обитания гидробионтов в зоне действия горнодобывающего предприятия.

Гидрологические наблюдения за изменением состояния прилегающих водных объектов при освоении крупных россыпных месторождений позволяют выделить три основные группы факторов, определяющих основное негативное воздействие добычных работ с применением гравитационных методов обогащения на экосистемы лососевых нерестово-нагульных рек.

Первая группа факторов представлена прямыми техногенными изменениями руслового режима рыбохозяйственных водных объектов и связана с деформациями или переносом естественного русла в процессе строительства и эксплуатации очистных сооружений.

Помимо полного уничтожения участков рек и ручьев в зоне их переноса, спрямление естественных русловых меандров сопровождается активизацией горизонтальных и вертикальных русловых деформаций, активной эрозией рыхлых отложений и коренных пород, увеличением уклона поверхности водного потока и ростом его транспортирующей способности. На основе изучения динамики изменения продольного профиля в пределах руслоотводов выделено три участка, характеризующихся различным режимом выноса и аккумуляции твердого обломочного материала. От верхней границы руслоотвода вплоть до выхода водного потока на толщу коренных пород наблюдается активная эрозия ложа и стенок с выносом значительных объемов обломочного материала вниз по течению. Непосредственно на коренных породах русло представляет собой водослив, который имеет порожисто-водопадную форму, характеризуется замедленной эрозией и практически полным отсутствием рыхлых отложений. В развитии нижнего участка выделяется два периода, когда первоначально здесь происходит активное врезание с выносом рыхлых отложений, а после выхода профиля на базис эрозии идет направленная аккумуляция обломочного материала с верхней части руслоотвода.

Основные негативные последствия данной группы факторов определяются безвозвратной утратой для нереста лососевых рыб участков естественного русла в зоне его переноса. Водопады и пороги, формирующиеся при выработке продольного профиля искусственного русла в коренных породах, создают дополнительные, в некоторых случаях непроходимые, препятствия для подхода лососей-производителей к нерестилищам в верхней части водотоков. Отсутствие укрытий и изменение кормовой базы в руслоотводах провоцирует миграцию молоди лососей для нагула на другие участки водной акватории. Значительный объем рыхлого материала, который выносится из руслоотводов, ведет к изменению морфологии естественного русла и гранулометрического состава русловых отложений в нижней части водных объектов и негативно сказывается на размере площадей пригодных для нереста лососевых рыб. Оценивая долю участия данной группы факторов в общем воздействии горно-добычных работ на водные экосистемы, следует отметить их локальное распространение, которое практически не выходит за пределы установленного горного отвода.

Вторая группа факторов представлена техногенными изменениями водного режима рыбохозяйственных водотоков и вызвана фильтрацией поверхностных и грунтовых вод в карьеры очистных сооружений.

Результаты проведенных наблюдений свидетельствуют о значительном уменьшении водности нерестово-нагульных рек в зоне действия горнодобывающего предприятия с формированием устойчивой обратной гидравлической связи, когда поверхностные воды водотоков питают грунтовые горизонты. Для расположенных в зоне ведения горно-добычных работ относительно крупных водных объектов с удельным расходом воды более 10 м3/с, уменьшение водности в низкую межень обычно не превышает 20%, что находится в пределах естественных колебаний. На малых реках и ручьях техногенное уменьшение водного потока может достигать 55% и сопровождаться значительным изменением морфодинамического типа русла.

Основные негативные последствия изменения водного режима малых нерестово-нагульных рек и ручьев определяются сокращением количества рукавов, являющихся местами нереста лососей и удобными стациями для нагула их молоди. В маловодные годы активный дренаж руслового потока в отдельных случаях ведет к пересыханию естественного русла и полному уничтожению нерестовых площадок в верхней части водотоков. Следует отметить, что воздействие данной группы факторов на водные экосистемы также имеет локальное распространение и отражается исключительно на средних и верхних участках малых нерестовых рек и ручьев.

Третья группа факторов представлена техногенным изменением мутности водных потоков, увеличением количества взвешенных наносов и заилением русловых отложений рыбохозяйственных водных объектов и определяется поступлением с площади ведения горно-добычных работ значительного объема взвешенных веществ.

Гидрологическими наблюдениями установлено, что если в естественных условиях при отсутствии атмосферных осадков содержание взвеси в водных потоках нерестово-нагульных рек территории, как правило, не превышает 1-3 мг/л, то в водотоках расположенных в зоне воздействия она составляла не менее 10 мг/л, достигая в отдельных случаях 1,5 г/л. Изучение гранулометрического состава взвешенных веществ показало, что увеличение содержания взвеси сопровождается существенным уменьшением крупности частиц. Если в естественных условиях средняя крупность взвеси составляет от 24 до 55 мкм, то в водотоках расположенных в зоне действия горнодобывающего предприятия её размер уменьшается до 3 - 16 мкм (рис.10).

Рис.10. Зависимость средней крупности взвешенных частиц (dср) от содержания взвеси в водном потоке (S)

Техногенный характер процесса определяется поступлением высокодисперсных взвешенных веществ со сточными водами, в которых средний размер взвешенных частиц составляет 4 мкм, а подавляющее их количество имеет размер менее 2 мкм (рис.11).

 Гранулометрический состав взвеси в водных объектах горного узла В связи с-13

Рис.11. Гранулометрический состав взвеси в водных объектах горного узла

В связи с малым весом высокодисперсных частиц, увеличение составляющей тонких фракций ведет к росту транспортирующей способности водного потока и позволяет переносить значительные объемы твердого материала на значительное расстояние от источника загрязнения. Перенасыщение водного потока взвесями определяет формирование значительных объемов взвешенных наносов, что проявляется в характере изменения мутности воды по простиранию водотоков, когда на мелких плесах с медленным течением происходит кратковременное оседание взвешенных частиц с их повторным взмывом на перекатах. Увеличение содержания тонких фракций в водном потоке существенно изменяет гранулометрический состав верхнего слоя русловых отложений нерестовых рек. Проведенные исследования показали, что содержание илистых фракций в составе русловых отложений нерестовых рек находящихся в зоне техногенного воздействия за время ведения горно-добычных работ выросло в среднем в два раза.

Негативный эффект техногенного увеличения мутности воды и заиления русловых отложений на первый взгляд малозаметен, но именно это продолжительное по времени изменение среды обитания гидробионтов представляет наибольшую опасность при ведении горно-добычных работ, так как широкомасштабно действует на всю нижележащую водную акваторию. Снижение продуктивности рыбохозяйственных водотоков в данном случае может проявиться через несколько лет, но будет иметь устойчивый и необратимый характер, так как негативное воздействие отразится на всех элементах водной экосистемы. Локализация третьей группы факторов является определяющим для сохранения важного рыбохозяйственного значения лососевых нерестово-нагульных рек территории при освоении платинометальных руд.

Для проведения объективной количественной оценки уровня загрязнения рыбохозяйственных водных объектов взвешенными веществами предлагается ввести показатель (КТЗ), который представлен отношением суммарного объема стока взвешенных веществ с площади водного бассейна с учетом ведения горно-добычных работ(WТС) к объему стока в естественных условиях (WЕС):

(3)


Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.