авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 6 |

Геологические условия накопления углеводородного сырья с токсическими свойствами компонентов

-- [ Страница 2 ] --

В одном из городов республики Коми вынуждены были ликвидировать здание школы, т.к. использованный при строительстве для гидроизоляции асфальт оказался радиоактивным. В г. Дзержинске (Поволжье) были зарегистрированы массовые отравления среди работников ТЭС, сходные с отравлением соединениями мышьяка. Проведенные исследования показали, что их причиной являлось ураганное содержание ванадия в мазутах, полученных из нефти одного из месторождений Поволжья. Токсические поражения в Коми и Дзержинске были выявлены лишь на медицинском уровне, причем, в основном, по значительному количеству специфических заболеваний. В тех случаях, когда примесь-токсикант не вызывает столь впечатляющего эффекта или медицинская статистика не налажена, его воздействие, как правило, остается незамеченным, а скрытое поражение продолжается неопределенно долго, выражаясь в повышенной, внешне немотивированной, заболеваемости и хроники населения. К сожалению таких примеров слишком много.

Иногда связь заболеваний населения с реализацией углеводородного сырья оказывается настолько завуалированной, что её выявление требует особых медико-биологических исследований. Так, после открытия и начала разработки Астраханского газоконденсатного месторождения, содержащего в составе газов примерно по 25% СО2, и H2S, в этом регионе начали фиксировать новый вид тяжелых, часто летальных заболеваний, которому присвоили название астраханская лихорадка. Впервые она была зарегистрирована в 1983 году. Полагали, что она связана со строительством нефтехимического комплекса и загрязнением окружающей среды. Однако позже академиком И.В. Тарасевичем совместно с французскими учеными было установлено, что возбудителем астраханской лихорадки является новый вид микроорганизмов, близкий к возбудителю средиземноморской пятнистой лихорадки, а их переносчиком собачьи клещи. В связи с деятельностью Астраханского газоконденсатного комбината в атмосферу выбрасывается большое количество углекислого газа. Его высокая концентрация в приповерхностном слое привлекает клещей, а клещи находят себе хозяев и в том числе среди людей.

Общеизвестно, что вместе с промышленным развитием регионов ухудшается и экологическая обстановка, особенно в районах переработки сырья. Не последнюю роль в такого рода загрязнении окружающей среды играют и углеводороды, как природные, так и продукты их переработки. Несмотря на невысокий уровень изученности этой проблемы в целом, есть очевидные положения. Среди них то, что по степени распространенности и скрытности воздействия наиболее опасны, причем в основном при утилизации, продукты переработки (мазуты) тяжелых сернистых, обогащенные металлами нефти. Именно эти нефти в недалеком будущем станут основой добычи на суше в европейской части РФ. Если доля объемов их добычи в целом по РФ не превышает в настоящее время 8-10%, то в пределах Поволжья она составляет уже около 20% (2009 г.) от общих объемов добычи в этом регионе и имеет выраженную тенденцию к росту. Поэтому одна из первоочередных проблем оценки экологических последствий при освоении углеводородов сводится с нашей точки зрения к целевому изучению основных видов опасных для биологических объектов компонентов-примесей в углеводородном сырье еще на стадии разведки, с тем чтобы превентивно регламентировать условия его экологически безопасного освоения, переработки и утилизации, исключающие или снижающие поражение среды токсикантами.

Исследование этой проблемы до некоторой степени облегчает обширный, хотя разрозненный и крайне неоднородный аналитический материал по содержанию элементов-примесей в сырой нефти, продуктах их переработки и газах, накопленных за длительные годы поиска, добычи и утилизации УВ во всём мире. Природа связи нефти и тяжёлых элементов-примесей, особенно таких, как V, Ni, Со, Cd, As, U, Zn, Cz, интересовала геологов, геохимиков и технологов уже издавна. Получила даже самостоятельное развитие целая отрасль в геохимии - нафтометаллогения.

Связано это, в основном, с двумя причинами. Первая – агрессивное влияние многих компонентов-примесей, особенно серы и тяжёлых металлов на качество товарной продукции, а также на аппаратуру, катализаторы и технологические процессы. Это вынуждает переработчиков постоянно исследовать их содержание в сырье, хотя эти данные редко находят отражение в публикациях. Вторая причина - использование данных о содержаниях элементов примесей в УВ в качестве индикаторов многих геохимических процессов, позволяющих решать вопросы образования, формирования и поиска скоплений нефти и газа в недрах.

К сожалению, в этих ситуациях основные интересы исследователей направлены на оценку присутствия в УВ ограниченного числа элементов, главным образом таких, как S, V и Ni, значительно реже - Со, U, Hg, As и совсем редко других, в числе которых многие элементы весьма токсичны. Именно поэтому уровень их изученности в целом остаётся существенно более низким, чем это необходимо.

В целом сложилась парадоксальная ситуация. На фоне сравнительно высокой изученности свойств и последствий воздействий УВ на окружающую среду практически вне исследований остались многие токсоопасные элементы-примеси, присутствующие в УВ сырье. При этом надо учитывать, что интенсивность их поступлений при утилизации УВ сырья будет с годами нарастать, поскольку по мере исчерпания сравнительно "чистой" лёгкой нефти будут возрастать объёмы добычи более тяжёлой, обогащенных токсикантами нефти и серосодержащих газов.

Приведённое выше краткое изложение состояния современной изученности проблемы оценки экологического воздействия УВ, обогащенных потенциально токсическими элементами-примесями (ПТЭ), на окружающую среду предопределило актуальность её детального исследования.

Причём в основу решений этой проблемы положено, прежде всего, выявление геолого-геохимических условий образования и распространения месторождений УВ, обогащенных ПТЭ, особенно нефти.

Имеется и вторая сторона этой же проблемы - состояние изученности экологического влияния продуктов переработки и утилизации УВ, обогащенных ПТЭ, попадающих в окружающую среду на биоту и, прежде всего, человека, остаётся низким. Сравнительно хорошо исследованы уровни опасности влияния токсичных элементов при производственных контактах, особенно в цехах, в рабочей зоне и пр., и значительно хуже - в состоянии их рассеяния в окружающей среде. Неопределёнными остаются также представления о процессах перехода ПТЭ из УВ сырья в контактную, т.е. активную для биоты формы. Простых данных о состоянии ПДК почвы, водного и воздушного бассейнов недостаточно для решения вопроса о степени токсической опасности этих элементов в регионе. К примеру, сверхвысокие концентрации V и Ni в нефтях и особенно выветрелых битумах, находясь в связанном с асфальтеновыми фракциями состоянии, токсического влияния на биоту не оказывают. Но эти же элементы в освобождённом при сжигании микродисперсном состоянии, рассеянные в почвах и ассимилированные растениями, становятся опасными для всей биоты, особенно опосредованно, по пищевым цепям.

Трансформация токсических свойств элементов, попадающих при утилизации УВ, может носить и обратный характер - уменьшаясь в ходе нейтрализации их почвами (кислыми или щелочными). Это тоже геохимическая проблема, связанная с изучением процессов рассеяния, аккумуляции элементов, но уже в более расширенном виде - приближенном к оценкам изменения биологических свойств ПТЭ и их соединений в ходе рассеяния. Подобного рода материал получают обычно при полигонных медико-биологических исследованиях, дорогих в производстве, выполняемых обычно только в регионах с критической для населения экологической обстановкой и массовой немотивированной хроники. То есть тогда, когда уже поздно внедрять превентивные защитные меры, и надлежит решать вопрос об отселении населения, не занятого на производстве, либо о ликвидации или переносе самого производства, что экономически всегда будет болезненно. Отметим только, что состояние изученности и этого раздела общей проблемы так же остаётся низким.

Такое пограничное положение поставленной нами для изучения проблемы, безусловно, затруднило её выполнение, но не уменьшило, а напротив, увеличило актуальность, т.к. позволило понять неотвратимость усиления негативного влияния на экологию окружающей среды человека, если продолжать оставаться в неведении относительно хода этих процессов и игнорировать их значимость.

Одновременно с этим мы не можем не учитывать, что топливно-энергетическое обеспечение остаётся повсеместной потребностью, поэтому неоправданных ограничений при реализации УВ сырья не должно быть. УВ - самое благоприятное в экологическом отношении ископаемое энергетическое сырьё, сравнительно с другими его видами - углём, горючими сланцами, ураном. Но около 15-20% добываемого УВ сырья уже содержат в своём составе токсические элементы-примеси в количествах, превышающих их безопасный уровень, и объёмы его добычи с годами возрастают. Ограничивать их использование даже при негативных токсических характеристиках сырья неправомерно. Поэтому особенно необходима корректная оценка возникающих рисков, исключающая как их завышение, так и занижение. Своевременная разработка и принятие защитных мер позволит исключить или затормозить дальнейшее ухудшение экологической обстановки в районах их утилизации.

Принципы подхода к решению проблемы не должны носить запретительного характера и в своей основе они просты - необходимо своевременно знать исходную биотоксическую характеристику состава сырья в его природном состоянии, обеспечить выбор технологий комплексной переработки сырья с целью выпуска экологически безопасной товарной продукции, а также вести постоянный контроль над составом сырья, по ступающего к реализации на основе соответствующей её паспортизации.

Обоснование и формирование именно этого подхода к решению проблемы экологически безопасного освоения УВ, обогащенных биотоксикантами, стало одной из практических целей нашего исследования.

В геолого-геохимической части выполненного нами исследования преобладают анализ и интерпретация материалов, накопленных многими отечественными и зарубежными исследователями. В их числе В.И. Вернадский, А.П. Виноградов, С.М. Катченков, С.Г. Неручев, В.А. Успенский и другие. Эти данные были дополнены аналитическим материалом полевых исследований автора в Тимано-Печорской и Волго-Уральской НГП, Мангышлакской НГО, на Камчатке и в Республике Польша.

Для обоснования и оценки экологических последствий, связанных с реализацией нефтяного сырья, обогащенного ПТЭ, и получаемой из него товарной продукции, собран и проанализирован фактический материал из области медико-биологических исследований и экспертиз, направленных на оценку биотоксичности тех элементов, которые наиболее широко распространены в составе УВ сырья. Среди авторов такого рода работ: Н.Н. Глущенко, В.Е. Зайденварг, Ю.А. Ершов, В.В. Ковальский, П. Ревель, Ч. Ревель, Дж. Эмсли и многие другие.

Глава 2. СОСТАВ, СВОЙСТВА И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ УГЛЕВОДОРОДНОГО СЫРЬЯ. Состав, свойства и биологическая активность углеводородного сырья. Его характеристика приведена в самом кратком виде, ориентируясь, в основном, лишь на те параметры, которые представляют наибольший интерес для разрабатываемой тематики, а именно: состав и свойства УВ, а также компонентов-примесей, в том числе токсичных, которые и анализируются в данной работе.

В современном нефтегазодобывающем секторе очевидна тенденция снижения добычи легкой и средней плотности нефти. Причём нефти «удобные» для добычи отрабатываются ускоренными темпами. Выработанность запасов разрабатываемых нефтегазовых залежей в России достигла почти 60% - при этом добыча ведётся «сверхинтенсивными» методами. Новые месторождения лёгкой и средней по плотности нефти, открыты, как правило, на северных территориях, либо в сложных коллекторах.

Тяжёлая нефть занимают особое место, отличаясь как по свойствам, так и по составу. В ней часто преобладают смоло-асфальтеновые соединения с тяжёлой молекулярной массой, состоящие из сложных полициклических молекулярных систем, часто обогащенных ПТЭ.

Мировые геологические запасы тяжелой нефти составляют более 810 млрд. т. Геологические запасы высоковязкой и тяжелой нефти в России достигают 6–7 млрд. т. По разведанным запасам тяжелой нефти Россия занимает третье место в мире после Канады и Венесуэлы. Эти цифры свидетельствуют о неизбежности высоких объемов освоения тяжелой нефти в ближайшем будущем.

Разведанные в России запасы тяжелой нефти, с плотностью более 0,904 г/см3, составляли на начало 2009 года 14,8% от их общей величины. Сосредоточены они в трех основных провинциях – Западно-Сибирской (48,4%), Волго-Уральской (29,2%) и Тимано-Печорской (18,2%). В 2008 г. добыто 5,6% от общей добычи нефти в России, но практически весь объём их добычи - 90% - приходится на европейскую, наиболее населённую часть России. Приходится ожидать и дальнейшего увеличения добычи тяжелой нефти в европейской части России, поскольку резервы открытия здесь запасов качественной нефти уже не велики, а имеющаяся инфраструктура и растущие объемы потребления нуждаются в поддержании добычи.

Важным показателем экологических свойств нефти является её растворимость. Растворимость нефти зависит не только от их свойств и состава, но также и от свойств растворителя и его температуры. Они хорошо растворяются в углеводородных и, особенно, углекислых газах, поэтому последние часто рассматривают как среду-носитель нефти при их миграции, особенно в высокотемпературных условиях глубоких недр. В воде они малорастворимы - до 130-160 см3/м3. Чем легче нефть, выше температура и меньше минерализация воды, особенно при ее гидрокарбонатно-натриевом составе, тем выше растворимость нефти в воде. Смоло-асфальтеновые фракции нефти малорастворимы не только в воде, но и в газах. Отсюда их более низкая миграционная способность, усугубляемая к тому же большими размерами их молекул.

Их поведение в приповерхностных условиях, т.е. в условиях температур, как правило, ниже 40-450С, остается сравнительно благоприятным - они мало растворимы, а следовательно, и мало миграционно-подвижны. Но если, к примеру, добыча высоковязкой нефти сопровождается применением парогенераторов, или методов подземного горения, экологическая ситуация резко меняется. Их растворимость в нарастающем ряду от метановых к нафтеновым и ароматике увеличивается, причем в 2-3 раза. К примеру, малорастворимые в нормальных условиях в воде бензол, толуол, бенз (а)-пирены, многие смоло-асфальтеновые фракции становятся растворимыми. Они выносятся с горячими водами из зоны добычи, загрязняя водоносные горизонты. Это же свойство нефти растворяться в сверхгорячих пластовых водах особенно с минерализацией менее 100 г/л следует учитывать и при сбросе нефтяных пластовых вод, попадающих на поверхность при добыче УВ с больших глубин, обычно более 4,0 км в бассейнах с высоким тепловым потоком.

Важной характеристикой свойств нефти является также температура их кипения. Углеводороды имеют весьма разные молекулярные массы - от 16 для метана до тысяч единиц для тяжелых смоло-асфальтеновых фракций нефти. В соответствии с их массой, при нагревании происходит фракционирование нефти. Это важнейшее технологическое свойство нефти - основа переработки на нефтеперегонных заводах. Оно важно также и при изучении экологических свойств нефтепродуктов, поскольку сера и значительная часть металлов концентрируется в их наиболее тяжелых остаточных фракциях.

Технологически разделяют нефти на фракции, выкипающие при разных температурах с выходом разных продуктов их перегонки. На долю тяжелых фракций даже легкой нефти приходится более трети их состава.

Конденсаты входят в состав фракций, выкипающих до 3500С. При более глубокой перегонке высококипящих фракций - более 3600С получают мазуты, гудроны и, наконец, кокс. Именно эти остаточные продукты глубокой перегонки концентрируют содержащиеся в нефти V, Ni и ряд других элементов (таблица 1). Hg, As и другие летучие элементы-примеси покидают нефть на более ранних стадиях перегонки, вместе с её легкими фракциями, а Hg может быть полностью потеряна нефтью ещё в ходе её добычи и промысловой подготовки к транспортировке.

Таблица 1. Концентрирование металлов в продуктах получаемых из тяжелой сернистой нефти

Месторождение, характеристика сырья и продуктов перегонки Плотность, т/м3 Содержание
S, % вес. V2O5, г/т Ni, г/т
Каражанбас (Мангышлак): сырая нефть гудрон кокс 0,939 0,999 - 1,5 2,9 4,2 295 554 2358 - - -
Арланское (Урало-Поволжье): сырая нефть гудрон кокс 0,891 - - 3,04 4,40 5,0 268 429 2429 - - -
Усинское (ГПП), Р1+С2: сырая нефть мазут (св.450°С) кокс 0,942 - - 2,5 - - 132 299 1687 42 89 538


Pages:     | 1 || 3 | 4 |   ...   | 6 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.