авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 3 | 4 ||

Основы извлечения вязких недонасыщенных газом нефтей из карбонатных коллекторов водогазовым воздействием на пласт

-- [ Страница 5 ] --

Для реализации описанных технологий была разработана технологическая схема, построена установка для приготовления и закачки газожидкостных смесей, которая успешно функционирует с мая 2004 года по настоящее время.

Принципиальная технологическая схема реализованного поверхностного обустройства системы приготовления и транспортировки ГЖС в условиях Алексеевского месторождения по замкнутому циклу «пласт – скважина – подготовка технологической ВГС – закачка» приведена на рисунке 12.

Вода из отстойника горизонтального с жидкостным фильтром (ОГЖФ) 1 поступает на блок фильтров 2. Затем, при закрытой задвижке 3 и открытой 4, подаётся на приём подпорного центробежного насоса 5 с приводом от электродвигателя 6. Для запуска насоса предусмотрена байпасная линия 7 с вентилем 8. Далее вода, проходя через обратный клапан 9, задвижку 10, регулятор давления 11 с манометром 12, расходомером 13, подаётся на приём насосно-бустерной установки 14 (НБУ). Приём НБУ оборудован электроконтактным манометром 15 и задвижкой 16.

Газ, отделённый от нефти и воды на УПС-7, с газосепаратора 17 по трубопроводу диаметром 57 мм подаётся на приём НБУ, который, в свою очередь, оборудован задвижкой 18, газовым счётчиком 19 и манометром 20.

НБУ 14 имеет привод от двигателя 21 через редуктор 22. Управление работой НБУ осуществляется с блока управления 23.

Выкид НБУ оборудован компенсатором 24, задвижкой 25, электроконтактным манометром 26, обратным клапаном 27, задвижкой 28, манометром 29, термометром 30 и пробоотборником 31.

Газожидкостная смесь с выкида НБУ по линии высокого давления 33 через задвижку 32 поступает на выносную гребёнку 34.

Здесь поток ГЖС делится в определённом соотношении расходов на два, а в будущем на три направления. Каждая ветка оборудована задвижкой 35, пробоотборником 36 и манометром 37.

Затем ГЖС по водоводу 38 диаметром 114 мм, смонтированному из металлопластмассовых труб, подается на устье нагнетательной скважины, оборудованное изолирующим соединением 39, задвижками 40, диспергатором  41, пробоотборниками 42, манометрами 43, обратным клапаном 44 и образцом для определения скорости коррозии 45.

Для предотвращения разрушения напорного трубопровода при авариях на выкиде НБУ предусмотрен аварийный отвод ГЖС в канализоляционную линию диаметром 159 мм. В этом случае ГЖС, минуя дренажную задвижку 46, попадает в колодец 47.

Для возможности исключения из технологического процесса НБУ предусмотрена обводная ветка 48, снабженная задвижками 49, манометром 50, расходомером 51 и шурфом для размещения погружной насосной установки 52.

В блоке НБУ предусмотрена эжекторная установка по компримированию газа для увеличения подачи объема газа в ВГС.

  Принципиальная технологическая схема системы приготовления и-34

Рисунок 12 – Принципиальная технологическая схема системы приготовления и транспортировки газожидкостной смеси

В шестой главе рассматривается пример реализации разработанных автором рекомендаций по оценке технико-экономической эффективности технологии разработки карбонатных коллекторов на Алексеевском месторождении.

Результаты теоретических и экспериментальных исследований, представленных в предыдущих разделах, были реализованы в виде проекта разработки опытного участка Алексеевского месторождения. Основные параметры блока № 1 Алексеевского месторождения и его геолого-физическая характеристика приведены в таблице 3.

Оценка данных разработки на существующих режимах показала, что при заводнении ожидаемый КИН при сложившейся системе разработки составит 0.110 д. ед., что свидетельствует о недостаточной эффективности реализованной системы разработки.

В связи с этим предлагаемые в работе изменения в системе разработки направлены на улучшение как технологических показателей разработки, так и экологической обстановки в районе Алексеевского месторождения за счет прекращения сжигания попутно добываемого газа, а также на повышение эффективности разработки объектов кизеловского горизонта за счет использования в качестве вытесняющего агента водогазовой смеси.

Таблица 3 – Геолого-физическая характеристика блока № 1 турнейского яруса Алексеевского нефтяного месторождения

Наименование параметра Значение параметра
1 2
Средняя глубина залегания, м 1403,4
Тип залежи пластово-сводовый и структурно-литологический
Тип коллектора трещиновато-поровый
Общая толщина, м 23,3
Средняя нефтенасыщенная толщина, м 5,6
Средняя водонасыщенная толщина, м 11,9
Пористость, % 12
Глинистость, % 0,9
Средняя нефтенасыщенность, д. ед. 0,710
Проницаемость, мкм2 (по данным ГИС) 0,007
Коэффициент песчанистости, д. ед. 0,936
Коэффициент расчлененности, д. ед. 1,385
Окончание таблицы 3
1 2
Послойная неоднородность, V2п, д. ед. 0,111
Зональная неоднородность, V2з, д. ед. 0,373
Начальная пластовая температура, °C 25
Начальное пластовое давление, МПа 11,1
Вязкость нефти в пластовых условиях, мПа*с 23,4
Плотность нефти в пластовых условиях, т/м3 839
Плотность нефти в поверхностных условиях, т/м3 870
Абсолютная отметка водонефтяного контакта, м 1135
Объемный коэффициент нефти, д. ед. 1,1050
Содержание серы в нефти, % 1,93
Содержание парафина в нефти, % 4,96
Давление насыщения нефти газом, МПа 4,2
Газовый фактор, м3/т 12
Вязкость воды в пластовых условиях, мПа*с 1,74
Минерализация, г/л 256
Коэффициент нефтеизвлечения, д. ед. (утверждённый) 0,170

Моделирование вариантов разработки проводилось до достижения скважинами предельной обводненности в 95 %, после чего скважины останавливались.

Для оценки технико-экономической эффективности предложенной в данной работе новой технологии разработки трещиновато-пористых карбонатных коллекторов с недонасыщенными газом вязкой нефти проведены расчеты по четырем вариантам разработки, результаты которых представлены в таблице 3, а расчеты экономической эффективности – в таблице 4.

Таблица 4

Сопоставление основных показателей разработки блока №1

Показатели Варианты
нулевой 1 (базовый) 2 (рек.) 3
Добыча нефти, тыс. т 124.9 252.7 348.8 391.1
Капитальные вложения, млн руб. 0 15 20 48
Накопленный чистый дисконтированный доход, млн руб. 31.957 43.145 49.213 39.076
Экономически предельный срок, годы 2013 2019 2023 2023



Основные выводы и рекомендации


  1. Анализ отечественной и зарубежной научно-технической литературы показал, что нефтяные месторождения, приуроченные к карбонатным коллекторам с вязкими недонасыщенными газом нефтями, имеют низкие показатели по темпам и объемам отбора и коэффициентам нефтеотдачи пластов. Отмечается как перспективное направление вытеснения нефти закачкой нефтевытесняющего агента газа и водогазового воздействия на пласт. При этом показано, что традиционные системы разработки оказались неэффективными ввиду отсутствия широкого диапазона отработанных в промысловых условиях технологий применительно к условиям вытеснения нефти из трещинно-поровых карбонатных коллекторов с двойной пористостью.
  2. Проведенные теоретические исследования механизмов протекания в пласте газовых, водогазовых технологий путем вытеснения вязких нефтей из карбонатного коллектора показали, что для модели пласта с двойной пористостью (матрица-трещина) при превышении проницаемости на два порядка и более от проницаемости матричных блоков и при интенсификации закачки газа (водогаза) происходит увеличение газонасыщения и пластового давления, что создает благоприятные предпосылки для ускоренного растворения газа в нефти и изменения его свойств, за счет чего отмечается рост средних дебитов скважин.
    Так, для модели пласта Алексеевского месторождения при увеличении закачки газа в технологии ВГВ от 5000 до 100000 м3/сут средние дебиты скважин по нефти увеличиваются на 140 % до начала времени прорыва газа (этот срок составляет около 22 месяцев).
  3. Численными исследованиями на модели процесса нефтеизвлечения и радиуса дренирования из трещинно-поровых коллекторов вязкой нефти установлено, что динамика изменения радиуса дренирования нефти скважиной определяется в трещинной и поровой системах временем дренирования и депрессией на пласт. Чем выше вязкость нефти и меньше депрессия на пласт, тем ниже радиус дренирования.
  4. Установлено, что при водогазовом воздействии отмечаются низкий охват воздействием низкопроницаемых поровых блоков и опережающая выработка запасов нефти из трещинной системы, идет интенсивный обмен пластовыми флюидами между трещиной и поровыми системами, но только в ячейке скважин, и отсутствует вдали от них, что является первым определяющим критерием для выбора оптимальных значений забойных давлений в добывающих скважинах и давления закачки в нагнетательных скважинах. При этом давления имеют индивидуальные значения как для стационарного режима работы скважин, периодического отклонения, так и нестационарного. Приведена методика определения численных значений Рзаб и Рзак для каждого режима эксплуатации скважин и нагнетания ВГВ.
  5. Экспериментальными исследованиями установлена общая закономерность снижения вязкостных характеристик пластовой недонасыщенной газом нефти как для терригенных, так и карбонатных коллекторов от воздействия водогазовой смесью с различными начальными значениями вязкости и количества введенного газа при данном давлении закачки. Численные значения снижения вязкости для карбонатных коллекторов составляют от 2.2 до 3.8 раз.
  6. Анализ результатов экспериментов, проведенных на численной модели, показал, что при регулировании режима работы добывающих скважин осуществляется более равномерное распределение ВГС в неоднородном коллекторе, что приводит к сглаживанию неравномерности по сетке скважин.
  7. Разработаны технологии вытеснения нефти из карбонатных коллекторов (патенты 2297523, 2299979 РФ), состоящие из элементов циклической закачки газа и ВГВ в виде отдельных оторочек и периодической остановки и пуска скважин с целью регулирования коэффициентом использования объема закачанного газа. По окончании периода закачки газа добывающие скважины переводятся в работу, а при прорыве газа или воды эти скважины останавливаются, и система переводится в режим нестационарного заводнения и отбора. Разработана методика расчета периода закачки газа (ВГС) и воды, а также дано определение технологических показателей режимов работы добывающих и нагнетательных скважин, основанных на использовании промысловых данных.
  8. Полученные в работе рекомендации и усовершенствованные технологии для выработки вязких нефтей из трещинно-поровых неоднородных по проницаемости коллекторов использованы при строительстве установки по приготовлению и закачке газожидкостных смесей (ВГС). В результате внедрения указанной технологии, включающей и применение водогазового воздействия на пласт, в период с мая 2004 г. по 01.07.2009 г. объем дополнительно добытой нефти составил 97 тыс. т с экономическим эффектом 16.0 млн руб. Эффект продолжается.

Основные результаты работы опубликованы
в следующих научных трудах:


Монография


  1. Вафин Р.В. Разработка нефтенасыщенных трещиновато-поровых коллекторов водогазовым воздействием на пласт. СПб.: ООО «Недра», 2007. – 217 с.

Публикации в ведущих рецензируемых научных журналах и изданиях, рекомендуемых ВАК Министерства образования и науки РФ

  1. Вафин Р.В. Особенности разработки нефтяных залежей кизеловского горизонта Алексеевского месторождения // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – №3. С. 16-23.
  2. Вафин Р.В., Владимиров И.В., Буторин О.И., Хисамутдинов Н.И., Фролов А.И., Зарипов М.С. Методы кластерного и дискриминантного анализа в выборе объектов для проведения геолого-технических мероприятий на примере участков Абдрахмановской площади Ромашкинского месторождения // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 4. С. 12-19.
  3. Вафин Р.В., Зарипов М.С Исследование процессов заводнения неоднородных коллекторов // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 4. С. 28-33.
  4. Вафин Р.В., Зарипов М.С., Алексеев Д.Л., Буторин О.И., Сагитов Д.К. Технико-технологические системы реализации водогазового воздействия на пласты // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 6. С. 32-38.
  5. Вафин Р.В., Зарипов М.С., Владимиров И.В., Казакова Т.Г. Заводнение нефтяных пластов с высокопроницаемыми включениями // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 4. С. 34-37.
  6. Вафин Р.В., Зарипов М.С., Гимаев И.М., Алексеев Д.Л., Буторин О.О., Сагитов Д.К. Стимуляция добычи нефти по кизеловскому горизонту Алексеевского месторождения обработкой призабойных зон добывающих скважин // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 7. С. 16-20.
  7. Владимиров И.В., Гильманова Р.Х., Казакова Т.Г., Коряковцев В.М, Зарипов Р.Р., Вафин Р.В. Моделирование процессов разработки нефтяной залежи башкирского яруса Тавельского месторождения // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 6. С. 55-73.
  8. Владимиров И.В., Казакова Т.Г., Вафин Р.В., Тазиев М.М., Чукашев В.Н. Особенности численного моделирования процессов нефтеизвлечения из трещиновато-поровых коллекторов // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 6. С. 50-54.
  9. Владимиров И.В., Казакова Т.Г., Насибуллин А.В., Вафин Р.В., Зарипов М.С. Определение радиуса контура питания скважины при решении задачи моделирования процессов фильтрации пластовых флюидов с учетом предельного градиента сдвига // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 6. С. 47-49.
  10. Владимиров И.В., Казакова Т.Г., Вафин Р.В., Тазиев М.М., Чукашев В.Н. О возможном механизме обводнения добывающих скважин, эксплуатирующих залежи вязкой и высоковязкой нефти // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 6. С. 73-77.
  11. Владимиров И.В., Коряковцев В.М., Зарипов Р.Р., Вафин Р.В., Зарипов М.С. Методические основы определения предельных нефтенасыщенных толщин для размещения новых скважин на «малых» нефтяных месторождениях Республики Татарстан (на примере Тавельского месторождения) // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 6. С. 39-46.
  12. Гильманова Р.Х., Сарваретдинов Р.Г., Ахметов Н.З., Салихов М.М., Халиуллин Ф.Ф., Вафин Р.В., Зарипов Р.Р. Исследование гидродинамической связи между пластами через литологические окна // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2003. – № 4. С. 4-14.
  13. Казакова Т.Г., Владимиров И.В., Коряковцев В.М., Вафин Р.В., Зарипов Р.Р., Щелков С.Ф., Зарипов М.С. Влияние процессов фильтрации жидкости в пласте на восстановление давления в скважине // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2003. – № 8. С. 42-46.
  14. Каюмов М.Ш., Владимиров И.В., Коряковцев В.М., Вафин Р.В., Зарипов Р.Р., Щелков С.Ф., Зарипов М.С. Исследование процессов установления стационарного режима работы скважины в зонально-неоднородном пласте // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2003. – № 8. С. 15-19.
  15. Муслимов Р.Х., Хисамов Р.С., Вафин Р.В., Хисамутдинов Н.И., Алексеев Д.Л., Буторин О.И., Владимиров И.В. Проект реализации водогазового воздействия на Алексеевском месторождении // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 6. С. 23-31.
  16. Ахметов Н.З., Салихов М.М., Рафиков Р.Б., Газизов И.Г., Вафин Р.В., Зарипов М.С. Анализ результатов применения нестационарного заводнения на Восточно-Сулеевской площади Ромашкинского месторождения и перспективы дальнейшего совершенствования технологий нестационарного нефтеизвлечения // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 3. С. 24-31.
  17. Вафин Р.В., Владимиров И.В., Буторин О.И., Хисамутдинов Н.И., Фролов А.И., Зарипов М.С. Анализ влияния на степень выработки участков Абдрахмановской площади параметров пласта и системы выработки // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. № 3. С. 9-16.
  18. Львова И.В., Рылов Н.И., Вафин Р.В., Гимаев И.М., Егоров А.Ф. Технология заканчивания скважин с формированием разуплотненной призабойной зоны при первичном вскрытии продуктивных пластов // НТЖ «Нефтепромысловое дело». – М.: ВНИИОЭНГ, 2004. – № 12. – С. 22-26.
  19. Вафин Р.В. Метод регулирования технологией

    Pages:     | 1 |   ...   | 3 | 4 ||
     





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.