авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 5 |

Основы извлечения вязких недонасыщенных газом нефтей из карбонатных коллекторов водогазовым воздействием на пласт

-- [ Страница 2 ] --
  1. В данном пакете возможно с высокой степенью точности моделировать все описанные модели трехфазной фильтрации. Модель предполагает, что в резервуаре содержатся нефть, растворенный газ и вода. Нефть и растворенный газ смешиваются в любых пропорциях при различных термобарических условиях. Процесс смешивания описывается моделью Тодда-Лонгстафа и может быть различным в разных частях пласта;
  2. В пакете возможно моделирование коллекторов с двойной пористостью (проницаемостью);
  3. В пакете гидродинамического моделирования предусмотрена визуализация входных и выходных данных, что дает возможность быстро оценивать результаты расчетов;
  4. Время расчета гидродинамических задач (в зависимости от размерности сетки) приемлемое для задач данного класса.

Рассмотрена модель элемента системы разработки гипотетической литологически экранированной залежи нефти, разрабатываемой с применением заводнения. В зависимости от поставленной задачи рассмотрены различные режимы эксплуатации залежи. Основная цель исследования – выяснить, как влияют режимы работы нагнетательной и добывающих скважин на выработку запасов нефти из коллекторов с двойной пористостью (проницаемостью) при обычном и водогазовом заводнениях.

Рассмотрен участок литологически экранированной залежи с коллектором с двойной пористостью (проницаемостью), состоящий из вложенных друг в друга пространств пористой низкопроницаемой матрицы и высокопроницаемых трещин. Принято, что трещины расположены хаотично и не имеют преимущественной ориентации в пространстве. Проницаемость трещин многократно превосходит проницаемость пористой матрицы, а пористость трещинного пространства во много раз меньше пористости матрицы.

Геометрические размеры модели 1000х1000х5 м. Модельная сетка имеет размерность 20х20х5. Начальные параметры вложенных пространств порового и трещинного коллекторов – пористость, проницаемость, нефтенасыщенность – являются однородными как по латерали, так и по разрезу (рисунок 1), а также с неоднородным распределением параметров коллектора.

Свойства пластовых флюидов моделировались для условий залежей с невысокой начальной пластовой температурой. Начальная

 а б а – трещинная система; б – пористая матрица; начальная нефтенасыщенность-2

а б

а – трещинная система; б – пористая матрица;

начальная нефтенасыщенность – 0.8 д. ед.

Рисунок 1 – Кубы текущей нефтенасыщенности

пластовая температура 40 С. Плотность и вязкость воды при начальной пластовой температуре приняты равными 1.010 г/см3 и 0.638 сПз соответственно. Для нефти плотность в поверхностных условиях составила 0.900 г/см3.

Начальное пластовое давление составляет 90.0 атм, давление начала разгазирования нефти – 56.6 атм. Начальный газовый фактор – 50 м3/м3. Начальный объем геологических запасов нефти составляет 553.6 тыс. м3.

При описании совместного движения фаз используются относительные фазовые проницаемости, согласно второй модели Стоуна. При этом предполагается, что при определении относительной фазовой проницаемости нефти в системе «нефть – вода» сумма нефтяной и газовой фаз является несмачиваемой, а при определении относительной фазовой проницаемости нефти в системе «нефть – газ» смачиваемой фазой является вся присутствующая жидкость (нефть + вода). В начальном цикле задач предполагается, что зависимости фазовых проницаемостей от насыщенностей водой и газом одинаковые для трещинной и поровой систем.

Исследована задача для 4 добывающих и одной нагнетательной скважин, образующих правильный пятиточечник. Нагнетательная скважина расположена в центре залежи. Расстояние между соседними добывающими скважинами составляет 500 м. Расстояние между нагнетательной и добывающими скважинами составляет 350 м.

Взаимодействие между системами пористого и трещинного пространств описывается с помощью коэффициента сообщаемости , где CD – постоянная Дарси; – параметр, определяемый линейными размерами блока матрицы (Lx, Ly, Lz), ; Km – проницаемость блока матрицы; Vm – поровый объем блока матрицы.

Многообразие свойств коллекторов с двойной пористостью описывается рядом следующих приближений:

1. Модель двойной пористости предполагает отсутствие обмена пластовыми флюидами непосредственно между пористыми блоками матрицы. Существует обмен только между блоками матрицы и трещинами. Пластовые флюиды движутся по трещинной системе, поэтому нагнетательная и добывающие скважины подключены только к трещинной системе. Такое приближение хорошо описывает процессы фильтрации в трещинных и трещинно-пористых коллекторах, где проницаемость трещин многократно превосходит проницаемость пористых блоков;

2. Модель двойной проницаемости предусматривает наличие обмена пластовыми флюидами между пористыми блоками. Пластовые флюиды движутся как по системе трещин, так и по пористым блокам матрицы. Скважины подключены к обеим системам. Такое приближение описывает порово-трещинные коллекторы, где проницаемость трещин сопоставима с проницаемостью пористых блоков.

Модель двойной пористости. Рассмотрена первая из перечисленных моделей коллектора с двойной пористостью. Принято, что проницаемость трещин на два порядка превышает проницаемость матричных блоков. Пусть проницаемость трещин составляет 1 мкм2, а проницаемость пористых блоков матрицы – 0.01 мкм2. Пористость трещин равна 0.01 д. ед, пористость блоков – 0.14 д. ед. Коэффициент зададим однородным и равным 0.084. Для определенности принято, что трещинная система – «жесткая», то есть коэффициенты сжимаемости матричных блоков и трещин равны.

Базовый вариант. В качестве базового варианта рассмотрено обычное заводнение через нагнетательную скважину. Для всех расчетов задана одинаковая продолжительность периода разработки – 253 месяца.

В результате численных исследований получено, что заводнение пласта приводит к быстрой выработке запасов трещинной системы и полному заводнению трещин. При этом значительную роль играют и гравитационные эффекты, в результате чего распределение нефтенасыщенности имеет характерный вид: минимальная насыщенность – в подошве пласта, максимальная – в кровле. Тупиковые области трещинной системы, находящиеся в «тени» от воздействия нагнетательной скважины, остаются незаводненными. Степень заводненности пористой матрицы во много раз ниже. Самым выработанным слоем является подошвенный слой, что связано с гравитационной пропиткой водой пористых блоков. Таким образом, выработка запасов нефти происходит в основном за счет заводнения трещинной системы.

С прорывом воды по трещинам к забоям добывающих скважин происходит резкое снижение эффективности вытеснения нефти.

Выработка коллекторов, описываемых моделью двойной пористости, характеризуется следующими чертами. Это, прежде всего, быстрая выработка запасов нефти и заводнение трещинной системы. Выработка блоков пористой матрицы происходит значительно медленнее, при этом, несмотря на значительные запасы, движение нефти к забоям добывающих скважин происходит через заводненную трещинную систему, что также увеличивает фильтрационное сопротивление для движения пластовых флюидов.

Немаловажным является процесс гравитационной пропитки водой пористых блоков, в результате чего наибольшему заводнению подвергаются нижние слои коллектора. Текущий КИН к концу рассматриваемого периода составил 0.095 д. ед. при обводненности 83 %.

Варианты разработки с водогазовым воздействием. Рассмотрены варианты с водогазовым воздействием. ВГВ моделировалось в виде последовательных закачек оторочек газа и воды при различных соотношениях объемных долей газа и воды в поверхностных (рабочих) условиях. В качестве газа моделируется природный газ, характерный для рассматриваемой залежи. Временные периоды закачки газа и воды (циклы) в рассмотренной ниже задаче брались постоянными в течение всего периода разработки и составляли: цикл закачки газа – 5 суток и цикл закачки воды – 25 суток. Объемные доли закачки газа и воды регулировались интенсивностью (приемистостью) закачки. Рассмотрены 6 вариантов, различающиеся относительными объемами закачанных воды и газа.

Вариант ВГВ0. В данном варианте в нагнетательную скважину в течение 5 суток закачивался газ с приемистостью 3000 м3/сут (22.6 м3/сут в пластовых условиях) и в течение 25 суток велась закачка воды.

К концу рассматриваемого периода разработки заводнению подвержена большая область коллектора (как трещинной, так и поровой составляющих) в сравнении с обычным заводнением.

При этом неравномерность выработки коллектора по вертикали за счет гравитационной составляющей движения флюидов снижается, но незначительно. Влияние газовой составляющей вытесняющего агента приводит к более полному заводнению прикровельных слоев поровой матрицы.

Варианты ВГВ1-ВГВ5 отличаются от рассмотренного выше лишь объемами закачиваемого газа. При этом приемистость нагнетательной скважины по газу в зависимости от варианта изменялась от 5000 м3/сут (ВГВ1) до 100000 м3/сут (ВГВ5).

Представляет интерес изменение степени выработки коллектора в зависимости от объемов закачанного газа. Динамики изменения представлены в виде кубов нефтенасыщенности на конец рассматриваемого периода разработки залежи по нескольким вариантам (рисунки 2 4). Видно, что степень выработки коллектора, как трещинной, так и пористой подсистем, значительно увеличивается с увеличением объемов закачиваемого газа. При этом, наибольшая выработка запасов нефти наблюдается в верхних и нижних слоях коллектора. Трещинная система заводняется в большей степени, чем поровая.

До определенной интенсивности закачки газа (в нашем случае это вариант ВГВ5) динамики дебита нефти по рассмотренным вариантам практически совпадают. Для изменения дебита нефти в начальный период характерно резкое падение, связанное с падением

 а б в г а, в – трещинная система; б, г – пористая матрица; -5

 а б в г а, в – трещинная система; б, г – пористая матрица; -6

 а б в г а, в – трещинная система; б, г – пористая матрица; шкала-7

а б

 в г а, в – трещинная система; б, г – пористая матрица; шкала нефтенасыщенности-8

в г

а, в – трещинная система; б, г – пористая матрица;

шкала нефтенасыщенности приведена на рисунке 1

Рисунок 2 – Куб текущей нефтенасыщенности (а, б) и вертикальные разрезы залежи (в, г) на конец рассматриваемого периода

(вариант ВГВ1)


 а б в г а, в – трещинная система; б, г – пористая матрица; -9


 а б в г а, в – трещинная система; б, г – пористая матрица; шкала-10








 а б в г а, в – трещинная система; б, г – пористая матрица; шкала-11

а б



 в г а, в – трещинная система; б, г – пористая матрица; шкала-12






в г

а, в – трещинная система; б, г – пористая матрица;

шкала нефтенасыщенности приведена на рисунке 1

Рисунок 3 – Кубы текущей нефтенасыщенности (а, б) и вертикальный разрез залежи (в, г) на конец рассматриваемого периода (вариант ВГВ3)

 а б в г а, в – трещинная система; б, г – пористая матрица;-13

 а б в г а, в – трещинная система; б, г – пористая матрица; -14








 а б в г а, в – трещинная система; б, г – пористая матрица; шкала-15

а б

 в г а, в – трещинная система; б, г – пористая матрица; шкала-16

в г

а, в – трещинная система; б, г – пористая матрица;

шкала нефтенасыщенности приведена на рисунке 1

Рисунок 4 – Кубы текущей нефтенасыщенности (а, б) и вертикальный разрез залежи (в, г) на конец рассматриваемого периода (вариант ВГВ5)

пластового давления, затем некоторая стабилизация и рост с приближением фронта закачиваемой воды при ее движении по трещинной системе. Такое же поведение дебита наблюдается и при обычном заводнении. После начала обводнения скважин в вариантах с ВГВ наблюдается некоторое увеличение дебита нефти, причем величина роста зависит от объема закачиваемого газа. Таким образом, эффект от применения ВГВ несколько отстоит по времени от начала применения воздействия на пласт. Величина эффекта зависит от объема свободного газа в пласте и от величины пластового давления.

Увеличение пластового давления создает благоприятные предпосылки для интенсивного растворения газа в нефти и изменения свойств нефти.

Изменение дебитов нефти связано с принципиальным изменением характера вытеснения при водогазовом воздействии. Увеличение объемов закачиваемого газа приводит к росту дебита нефти и значительному снижению обводненности добываемой продукции. Вместе с тем, возрастает газонефтяной фактор, что говорит о снижении эффективности использования закачиваемого газа как вытесняющего агента. Характеристики вытеснения показывают увеличение добычи нефти на единицу добываемой жидкости, что подтверждает эффективность водогазового воздействия.

Изменение зависимости КИН от накопленного объема закачанного газа в пластовых условиях в долях от объема пор коллектора (рисунок 5) показывает, что эффективность ВГВ тем выше, чем больше объем закачанного газа.


  Зависимость КИН от накопленного объема закачанного газа-17

















Рисунок 5 – Зависимость КИН от накопленного объема закачанного газа в долях порового объема резервуара в пластовых условиях

Изучена динамика изменения контура питания скважины моделированием процессов фильтрации вязких нефтей с учетом предельного градиента сдвига и объема закачанного газа. При этом будем иметь в виду, что в теоретических исследованиях под водогазовым воздействием будем понимать определенные эффекты от закачиваемого агента для нефтевытеснения: изменения вязкости пластового флюида, охвата пласта заводнением и коэффициента вытеснения.

Принято, что на большинстве малых нефтяных месторождений Урало-Поволжья, приуроченных к карбонатным отложениям, вязкость нефти изменяется в очень широком диапазоне – от 20 до 500 мПас.

Рассмотрена фильтрация двухфазной жидкости в районе единичной добывающей скважины, вскрывшей однородный пласт. Поставленная задача решалась численно с использованием метода impes. При решении задачи принимались следующие аппроксимации зависимостей относительных фазовых проницаемостей от водонасыщенности:

и , (1)

где a и b – некоторые постоянные; S*w (S*o) – предельное значение водонасыщенности (нефтенасыщенности), ниже которого движение воды (нефти) не происходит. Принято, что , . При этом начальные значения водонасыщенности и нефтенасыщенности принимаются равными , соответственно.

Проведенные расчеты при различных параметрах проницаемости и вязкости нефти дали результаты зависимости радиуса контура дренирования скважины от времени при различных депрессиях на пласт (рисунок 6). Хорошо видно, что при меньшей депрессии стационарный режим работы скважины достигается быстрее, но радиус контура дренирования при этом меньше, чем при большей депрессии. При соотношении вязкостей нефти и воды 0 = 20 и проницаемости коллектора 1 мкм2 установившийся радиус контура дренирования составляет 84 и 95 м для значений забойного давления 15 и 10 МПа соответственно. Начальное пластовое давление предполагалось равным 17 МПа.

Зависимость радиуса контура дренирования скважины от проницаемости коллектора показывает, что для вязких нефтей (0~10) даже при значительной проницаемости коллектора (порядка 1 мкм2) радиус контура дренирования скважины ограничен и не превышает 100 м.

  Зависимость радиуса контура дренирования от времени при различных-24

Рисунок 6 – Зависимость радиуса контура дренирования от времени
при различных значениях забойного давления (соотношение вязкостей нефти и воды 0 = 20, проницаемость коллектора 1 мкм2)

На основании выполненных исследований установлены причины низкой нефтеотдачи на залежах вязкой и высоковязкой нефтей. Полученные модельные результаты показали, что для таких залежей области дренирования скважин ограничены и даже для высокопроницаемого коллектора не превышают 100…150 м. Для коллекторов с более низкой проницаемостью радиус дренирования питания составляет 40…50 м.

Исследованы путем численного моделирования процессы нефтеизвлечения и радиусы дренирования из трещиновато-поровых коллекторов с вязкими нефтями.

Рассмотрены особенности фильтрации пластовых флюидов в трещиновато-поровых и порово-трещиноватых коллекторах.



Pages:     | 1 || 3 | 4 |   ...   | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.