авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 2 | 3 || 5 |

Моделирование природных и техногенных систем промышленно-урбанизированных регионов (на примере республики татарстан)

-- [ Страница 4 ] --

Примечание. Выделены значимые факторные нагрузки

«природной» группы элементов до 7 компонентов, тогда как в подземной гидросфере их количество достигает 14. Факторный анализ позволил определить, что «природный» фактор подземной и поверхностной гидросфер формируется только за счет макрокомпонентов. В подземной гидросфере значимым параметром «природного» фактора являются кальций и хлор, а в поверхностной гидросфере – натрий, калий, магний, железо и сульфат-ион.

Цифровые модели вод исследованной территории позволили выполнить системный анализ и геоэкологическую интерпретацию данных (Сунгатуллин, 2008). Так, стало возможным выявить факторы, характеризующие геологическую, гидросферную, физическую и неотектоническую составляющие (см. табл. 4). Аналогично вышеприведенному алгоритму созданы интегральные модели поверхностной и подземной гидросфер для Набережно-Челнинской площади (рис. 5). По весу каждого из факторов (см. табл. 4) можно установить долю введённых данных от объёма геоэкологической информации. Например, интегральные модели подземной и поверхностной гидросфер содержат 1/3 часть всей современной информации, что свидетельствует о важности исследования гидросферы как центрального элемента техногеосистемы. Наряду с химизмом поверхностных и подземных вод, интегральные гидросферные модели включают в себя также информацию о других средах, что фиксируется значимыми факторными нагрузками последних в интегральных гидросферных моделях (см. табл. 4).

Интерпретация интегральной модели зависит от ее целевой направленности. Так, с помощью модели подземной гидросферы Набережно-Челнинской площади выделяются области развития защищенных и незащищенных от загрязнения подземных вод (см. рис. 5, А). Подобную информацию можно использовать как в экологических, так и в поисковых целях для решения актуальной проблемы водоснабжения г. Набережные Челны за счет подземных источников (Сунгатуллин, 2009). Наиболее перспективными объектами для питьевого водоснабжения следует считать участки недр с условным параметром менее минус 20, которые расположены на левобережье Нижнекамского водохранилища в нескольких километрах от города. Интегральная модель поверхностной гидросферы выделяет области развития относительно чистых и загрязненных речных вод (см. рис. 5, Б). Подобные модели применимы при мониторинговых исследованиях и определении стоимости природных ресурсов отдельных территорий. Поэтому при экологических прогнозах особенно важна актуализация информации путем периодического сбора данных, обратной связи и модернизации интегральной модели. Такие модели могут создаваться для отдельных объектов, площадей, регионов и в целом для России, а получаемая информация пригодна, соответственно, для решения задач локального, регионального и федерального уровней.

Положение 3. На промышленно-урбанизированных площадях происходит техногенная трансформация химического состава депонирующих сред. С помощью аппарата математической статистики разработаны критерии обнаружения техногенных аномалий и количественно оценен вклад природных, природно-техногенных и техногенных процессов в общую информацию о техногеосистеме (глава 4).

Наряду с некоторыми природными факторами, техногенная деятельность рассматривается как одна из самых мощных современных геологических сил, преобразующих земную кору, модифицирующих физические и химические поля, формирующих новые структурные элементы. Активная переработка геологического пространства под воздействием техногенеза приводит к формированию в глобальном масштабе в гидролитосфере совершенно новой триады элементов «порода – вода - техногенные образования» - техногенной коры выветривания. Последняя наиболее приспособлена к условиям техногенно-преобразованной окружающей среды, а агентами выветривания здесь, наряду с природными физическим, химическим и биологическим факторами, являются антропогенный и техногенный. Наиболее динамичным элементом техногенной коры выветривания является гидросфера, где зарождается водоносный современный техногенный ареал (Сунгатуллин, 2009), отвечающий участкам антропогенного изменения подземной гидросферы. Пространственная форма водоносного ареала в виде вертикального цилиндра отличает его от природных пластообразных гидростратиграфических подразделений.

Установлено, что техногенез и урбанизация способны ускорить естественный круговорот веществ, включая и химические элементы в гидросфере. На промышленно-урбанизированных площадях РТ установлена техногенная трансформация химического состава гидросферы с формированием техногенного водоносного ареала (Сунгатуллин, 2007, 2009). Например, добыча углеводородов и нефтепромысловые сооружения на юго-востоке РТ за 50 лет привели к наиболее масштабным техногенным изменениям подземной гидросферы (Ибрагимов, 2007). Извлекаемые попутно с нефтью крепкие хлоридные натриевые рассолы способствовали образованию многочисленных техногенных минерализованных родников. Если в начале 70-х годов прошлого столетия на территории РТ в зоне активного водообмена не было выявлено ни одного водопункта с водами хлоридного типа, то в настоящее время на площади нефтяных месторождений такие воды встречаются повсеместно, при этом содержание хлоридов в них значительно превышает 1 г/л (рис. 6).

Важным аспектом изучения вод техногенного ареала являются критерии их выделения. Нами выборка вод техногенного происхождения осуществлялась с помощью методов математической статистики на примере минеральных вод РТ (Сунгатуллин, 2006, 2009). Кластерный анализ выявил «техногенную» и «природную» группы компонентов. В первую группу вошли хлор, натрий, калий, а вторую составили кальций и сульфат-ион. При этом поведение химических компонентов в водоносном техногенном ареале и в природных гидростратиграфических подразделениях существенно различается (рис. 7). В отличие от природных вод, воды техногенного ареала не обладают вертикальной гидрохимической зональностью, т. е. являются азональными. Ареал отличается

от природных минеральных вод повышенной (в среднем в 2 раза) минерализацией и преимущественно сульфатно-хлоридным магниево-натриевым составом. В настоящее время около 25 % минеральных вод РТ в зоне активного водообмена образовались за счет техногенной трансформации химического состава природных вод.

На примере типичных промышленно-урбанизированных площадей РТ рассмотрены взаимоотношения природных и техногенных процессов. Например, состав техногенно-преобразованных вод в Приказанском районе изменяется в разрезе сверху-вниз следующим образом: (НCO3-SO4–Ca-Na)(SO4-НCO3-Mg-Ca)(НCO3-SO4–Na-Mg-Ca)(SO4-Ca). Это обусловлено в основном заполнением Куйбышевского водохранилища и подъемом уровня подземных вод, которые замедлили водообмен между приповерхностными водоносными горизонтами и способствовали подтоку минерализованных вод снизу, а также резким ростом промышленной деятельности в 60-80-е годы прошлого столетия (индустриальный этап развития г. Казань) и поступлением в подземную гидросферу «сверху» дополнительных химических компонентов. Данные факторы трансформировали природный химический состав подземных вод и привели к формированию здесь водоносного техногенного ареала. Ретроспективный анализ изменения содержаний химических компонентов показал, что до середины 50-х годов XX века состав подземных вод формировался за счет природных особенностей гидролитосферы. Существенные изменения произошли при заполнении Куйбышевского водохранилища (рис. 8). В течение 5-6 лет гидросфера адаптировалась к поднявшемуся уровню вод, что выразилось в значительном росте общей жесткости (в 3 раза) и содержаний железа (в 100 раз). Наиболее существенные изменения подземной гидросферы произошли в начале 1960-х годов. Антропогенно-измененный период, продолжающийся более 50 лет, отразился в резком повышении сухого остатка (в 5 раз по сравнению с природным периодом), сульфатов (в 10 раз), общей жесткости (в 4 раза), железа (в 50-150 раз). В настоящее время отмечается этап стабилизации трансформированного состава подземных вод (см. рис. 8), который сохранится в ближайшем будущем, так как растворы сульфатных солей относятся к очень стойким и медленно распадающимся соединениям со временем распада в десятки и сотни лет (Гольдберг, 1983). Таким образом, в Приказанском районе основным пусковым механизмом трансформации состава подземной гидросферы послужило создание Куйбышевского водохранилища.

Впервые для территории РТ автором показана эффективность применения статистических методов для разделения природных и техногенных ассоциаций химических элементов в геологических объектах с целью решения экологических задач. Сопряженное опробование донных осадков на территории РТ позволило сопоставить распределение химических элементов и областей развития техногенных объектов. Например, в илистой фракции повышены содержания Al, Ti, Fe, Mn, P, Mg, K, а в песчаной фракции - Si, Ca, Na (Сунгатуллин, 2005). Факторный анализ макрокомпонентов выявил факторы, отвечающие за их природные и

техногенные особенности. Созданные модели и экологическая интерпретация результатов статистической обработки выделяют техногенный фактор донных осадков, основной вклад в который вносят Mn, P и Na, что подтверждается совпадением аномалий данных элементов с площадями развития техногенных объектов. Распределение микроэлементов в донных осадках показало (Сунгатуллин, 2007), что в илистой фракции концентрируется бльшая часть из изученных 47 элементов. В песчаной фракции повышены содержания Co, Cr, Sn, Sr, Hg. Статистическими методами выделены природная, техногенная и природно-техногенная группы элементов. Природные особенности характеризуются V, Sc, Ti, Zr, Y, Yb, Ba, Be; к элементам преимущественно техногенного происхождения относятся Mn, P, As, Sn, Nb, а смешанного генезиса - Zn, Pb, Cu, Ni, B, Li, Ga, Co. Распределение микроэлементов показало их зависимость от гранулометрического состава донных осадков и от типа техногенных объектов.

Статистическая обработка геохимических данных с применением факторного анализа позволила выявить факторные нагрузки в потоках рассеяния. С учетом геохимических особенностей элементов, геологического строения и особенностей техногенных объектов, каждый из факторов получил экологическую интерпретацию. Модели геохимических полей, созданные по факторным нагрузкам, системно представляют информацию по всем химическим элементам в виде интегральных моделей. При этом наиболее отчетливо выражена связь интегральной модели «техногенного» фактора со степенью антропогенной нагрузки. На примере территории РТ показана возможность использования систематизированной информации по распределению химических элементов в промышленно-урбанизированных регионах для эколого-геохимического мониторинга, а выделенные природные, техногенные и природно–техногенные ассоциации элементов способствуют решению разнообразных прикладных и теоретических задач.

Некоторые взаимоотношения биотических и абиотических параметров в техногеосистемах рассмотрены на примере почвенного и растительного покровов Набережно-Челнинской площади РТ (Сунгатуллин, 2009). Биогеохимические исследования показали взаимосвязанное поведение элементов в данных средах. В дерново–подзолистых, лесных и черноземных почвах выделяют два уровня концентрации химических элементов – горизонты С2 и А1. Среди растений основным концентратором химических элементов и, соответственно, биоиндикатором является мох, в золе которого установлены аномальные содержания 19 элементов. Факторный и кластерный анализы позволили выделить в почвах и растительности параметры, характеризующие природный субстрат (материнскую породу), биологическую и антропогенную составляющие. Наиболее выражен «литофильный» геохимический фактор, основную нагрузку которого формируют породообразующие элементы Fe, Ti, Al. Именно состав пород является определяющим фактором геохимического облика растений и почв. Элементы второй группы (Ca, Na, P, Sr, Mg, Mn, Ba и др.) играют важную роль в жизнедеятельности растений, и их можно выделить как биофильные элементы. Наконец, третья (технофильная) группа объединяет Pb, Cr, Ni, Mo, Ga, Ge, Co, As, Cu, которые связаны с деятельностью промышленных и урбанизированных объектов, поступая в растения с пылью, атмосферными осадками и подземными водами. Выявлена зависимость между химическим обликом пород, почв и растительных сообществ, что подтверждает взаимообусловленность процессов в пределах отдельных ландшафтов. Причем вклад «литологического» фактора в химический состав почв и растительности, по сравнению с биофильным и технофильным факторами, является доминирующим и составляет более 60 %.

Создание эколого-геохимических моделей позволяет принципиально сравнивать результаты различных видов анализов и опробования. Например, по результатам мониторинговых работ на промышленно-урбанизированных площадях РТ установлено: совпадение содержаний химических элементов в донных осадках с гидрохимическими полями (Сунгатуллин, 2001); взаимосвязь между подземными и поверхностными водами (Сунгатуллин, 2008, 2009); общие тенденции поведения элементов в подземной гидросфере и почвах. Все это свидетельствует о влиянии техногенеза на разные геосреды.

Положение 4. Техногенные месторождения нефти и минеральных вод на промышленно-урбанизированных территориях характеризуются относительно высокой в геологическом масштабе скоростью формирования, что позволяет увеличить минерагенический потенциал регионов (глава 7).

В XXI веке использование техногенных месторождений будет рассматриваться как одно из стратегических направлений развития минерально-сырьевого комплекса России. Поэтому в последние годы проблемам формирования, изучения и переработки техногенных месторождений уделяется значительное внимание (Воробьев, 2001; Гаев, 1996; Макаров, 2006; Трубецкой, 2008; Чайников, 2001 и др.). Особенно интересны такие исследования для регионов, где история горнодобывающей промышленности и, соответственно, формирования техногенных месторождений насчитывает многие десятилетия и столетия. К подобным регионам относится и РТ, где еще в XVIII веке сформировались техногенные месторождения - отвалы при добыче медных руд. К настоящему времени на территории республики накоплены сотни миллионов тонн отходов минерального сырья, однако они практически не исследовались с точки зрения техногенного сырья. На территории РТ к первоочередным объектам подобного изучения можно отнести промышленно-урбанизированные территории, так как освоение здесь техногенных месторождений решает многие экономические, социальные и экологические задачи.

В геологическом пространстве промышленно-урбанизированных территорий формируются структуры, в которых наблюдаются неоднородности теплового, химического, физического, техногенного и других полей. Поэтому здесь выделяются технофлюидные ячейки с мощным совместным проявлением техногенеза и минерагенического потенциала (Сунгатуллин, 2009). Обмен веществом в подобной ячейке обусловлен физическим механизмом вертикального тепло- и массопереноса при миграции флюидов снизу вверх (природное направление) и сверху вниз (техногенное направление). Вертикальный перенос флюидов обусловливает дестратификацию геологического пространства и азональность природного вещества с образованием техногенных месторождений полезных ископаемых за счет переработки природного вещества, а радиально-латеральные массоэнергопотоки играют ведущую роль в распространении антропогенных и техногенных воздействий. Следовательно изучение технофлюидных ячеек может привести к познанию роли техногенеза в образовании техногенных месторождений и проявлений, а также его влиянии на круговорот вещества и энергии. Подобные ячейки являются не только каналами распространения природного вещества и энергии, но и источником антропогенного изменения окружающей среды, т. е. эталонными объектами геопатогенных зон и межгеосферного обмена веществ (Востоков, 2007; Лузгин, 2007 и др.).

К настоящему времени актуальной проблемой является открытие новых залежей углеводородов в традиционных нефтегазоносных регионах и, в частности, в РТ. В современной флюидодинамической концепции формирования в земной коре широкой гаммы полезных ископаемых, включая месторождения углеводородов в пределах древних платформ, флюидным растворам отводится главная роль (Соколов, 1999). Мигрирующие снизу вверх флюиды являются мощными тепломассоносителями и реализуют механизм конвекции в пределах участков тектонических напряжений и зон повышенной

вторичной проницаемости. За счет прорывов энергоемких флюидов по вертикали формируются многопластовые залежи. Следует учитывать возможность переформирования углеводородной залежи за счет естественного и


искусственного воздействий на природный нефтяной пласт за очень короткий период времени и даже в течение нескольких лет (Гаврилов, 2008), что соответствует, например, возрасту месторождений пресных подземных вод. С другой стороны, области проявлений техногенно-индуцированных землетрясений на востоке РТ могут послужить объектами поисков промышленных скоплений нефти, так как динамика литосферы и сейсмичность напрямую связаны с процессами перераспределения флюидов в пространстве (Адушкин, 2005). Период проходки сотен тысяч скважин на нефтеперспективных площадях РТ составляет более 60 лет. Поэтому вероятность возникновения в технофлюидных ячейках вторичных техногенных залежей углеводородов в надпродуктивных горизонтах за счет техногенно-обусловленного флюидного потока существенно возрастает (рис. 9). В подобных структурах образуются инъекции углеводородов и рассолов в верхние структурные этажи. Факты флюидного «загрязнения» подземной гидросферы нефтепродуктами, хлоридами, сульфатами могут указывать на возможность обнаружения техногенных месторождений углеводородов и минеральных вод в кайнозойско-верхнепалеозойской части осадочного чехла территории РТ, что значительно расширяет горизонты поисково-разведочных работ на старых нефтепромыслах.



Pages:     | 1 |   ...   | 2 | 3 || 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.