авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 4 | 5 || 7 |

Совершенствование методологии восстановления качества поверхностных вод природных водных объектов на уровне субъекта федерации (на примере забайкальского края)

-- [ Страница 6 ] --

1965 1981 2006 (прогноз)

Рис. 5. Интегральная сравнительная оценка и этапы изменения экосистемы оз. Кенон

Таким образом, назначение нормативов допустимых воздействий на водные объекты и их водосборы должно производится на основании фактического состояния водного объекта, а основополагающие принципы их назначения должны быть следующими: Первый – региональность. Второй – временность. Третий – разработка программы водоохранных мероприятий. Четвертый – регулярный мониторинг и пересмотр нормативов. Пятый – увязка с наличием финансовых средств.

В этих условиях наиболее эффективно применять следующий подход к расчету нормативов допустимых воздействий на водные объекты:

1. На первом этапе расчетные нормативы носят временный характер, направлены на стабилизацию существующего экологического состояния водного объекта, которое определяется показателем существующего состояния.

2. Одновременно разрабатывается перечень «Программы…» по стабилизации и поэтапному восстановлению водного объекта, а так же ориентировочный требуемый уровень при реализации намеченных мероприятий и срок исполнения программы.

3. В процессе реализации мероприятий «Программы…» на основании непрерывного мониторинга нормативы должны периодически пересматриваться с учетом вновь накопленных данных фактического изменения экологического состояния водного объекта, а так же достигнутого уровня по сравнению с планируемым. Ведутся наблюдения по уточнению природного фона.

4. На всех последующих этапах вводимые нормативы ужесточаются в сторону приближения к уточненному природному фону.

В соответствии с данным подходом предлагается под временным нормативом допустимых воздействий на водный объект (его участок) по привносу ЗВ понимать комплекс следующих показателей:

1. Показатель существующего состояния водного объекта (участка) по привносу химических веществ и соединений – ПСС.

2. Ориентировочный требуемый уровень снижения вредного воздействия на водный объект (участок) по привносу химических веществ и соединений – ОТУС.

3. Программу водоохранных мероприятий – ПВМ.

4. Срок исполнения программы ПВМ и достижения ориентировочного уровня вредного воздействия на водный объект (участок) - СИП.

Реализация программы должна осуществляться при постоянном мониторинге состояния водного объекта, что позволит оценить эффективность предлагаемых мероприятий и произвести их корректировку на последующих этапах.

Пятое защищаемое положение при определении ориентировочного уровня улучшения качества вод и разработке программ водоохранных мероприятий должно осуществляться прогнозирование качественного состава водных объектов, т.е. его моделирование.

При разработке целевых программ (назначении ОТУС), оценки эффективности планируемых мероприятий необходимо производить прогнозирование качества вод водных объектов. Теоретические исследования и практический опыт как отечественных, так и зарубежных исследователей показал, что даже для достаточно крупного водного объекта эффективность известных прогнозных моделей качественного состава вод в значительной мере определяется полнотой и адекватностью задания исходной информации. Для прогнозирования гидрохимического режима водных объектов используется большое количество различных моделей, направленных на решение таких задач, как трансформации ЗВ по длине водотока; гидрологического и гидрохимического режимов водного объекта; источников загрязнения; размеров расчетной области и др. Разработанные в настоящее время математические модели, в зависимости от вида уравнения, исследуемой области и краевых условий для расчета поля концентраций примесей, позволяют применить один из следующих методов решения: точное аналитическое решение; приближенные аналитические методы; метод гидравлического моделирования; численные методы. Для каждого водного объекта должна создаваться гидродинамическая модель, полностью адаптированная к его особенностям и отвечающая следующим требованиям:

1. Отражать основные закономерности формирования качественного состава вод водных объектов.

2. Расчет трансформации ЗВ должен производиться за относительно короткое время и при экономичном использовании требуемых ресурсов.

3. Должны быть указаны методы идентификации параметров модели.

В то же время, применение математических моделей в настоящее время ограничено по двум причинам. Во-первых, для использования этих методов требуется значительное количество исходных данных, имеющих достаточно высокую точность, и большие вычислительные ресурсы. Во-вторых, при использовании только осредненных по сечению потока характеристик модели существенно теряют свои преимущества. Еще более сложной является проблема оценки исходных параметров моделей (как правило, сложные многокомпонентные модели более чувствительны к точности задания исходных параметров). Достаточно адекватное задание параметров таких моделей в общем случае возможно на основе многолетних, детальных и комплексных гидрохимических, гидрологических и гидробиологических наблюдений. Поэтому при создании системы оперативного прогнозирования и нормирования техногенных нагрузок, при достаточно ограниченном объеме исходной информации, в первую очередь, гидрохимического, гидробиологического характера, целесообразно использовать более простые модели.

Предлагается следующий подход назначения ориентировочного требуемого уровня снижения вредного воздействия на водный объект по привносу ЗВ, базирующийся на уравнении материального баланса.

Рассмотрим выделенный участок реки, ограниченный верхним -ым и нижним ()-ым створами (рис. 6). Выразим массовый расход -того ЗВ в нижнем створе () через таковой в верхнем (), самоочищающую способность водного объекта () и поступление этого же вещества в пределах выделенного участка, как с диффузионным, так и с сосредоточенным стоками (, где – количество сосредоточенных притоков), т.е. ():

. (23)

 Схема изменения расходов воды в реке, массового расхода и концентрации j-того-195

Рис. 6. Схема изменения расходов воды в реке, массового расхода и концентрации j-того ЗВ, на участке реки от верхнего -ого створа до нижнего (i +1)-ого створа

На современном этапе развития науки по данному вопросу решить уравнение (23), а так же разделить поступление ЗВ и их самоочищение не представляется возможным.

Известно, что формирование качественного состава в водном объекте происходит под действием двух взаимосвязанных процессов – это «чистого «механического» разбавления» и под действием естественных процессов. Рассмотрим частный случай изменения качественного состава водотоков, – случай «чистого разбавления», который наиболее часто используется в практике гидрохимических расчетов. Для него характерны следующие условия:

1) Изменение концентраций ЗВ происходит только за счет их поступления и последующего разбавления в пределах выделенного участка, т.е. .

2) Изменения масс ЗВ за счет естественных процессов в водном объекте на этом участке, не происходит, т.е. , поэтому .

3) Расход воды в нижнем створе () складывается из транзитного расхода, протекающего через верхний створ (), и сформировавшегося расхода в пределах выделенного участка как за счет сосредоточенного, так и диффузионного стоков, т.е.: , при этом .

Уравнение для расчета приращение концентраций -того ЗВ между рассматриваемыми створами может быть записано в следующем виде:

. (24)

Если уравнение (24) преобразовать, то окончательно оно может быть записано в следующем виде:

, (25)

которое и описывает трансформацию рассматриваемого ЗВ в случае «чистого разбавления». Если в уравнении (25) ввести обозначения: первое: , которое позволяет сделать вывод о том, что оно не зависит от вида ЗВ и равно обратной величине расхода водотока в замыкающем ()-ом створе, и второе: , то оно может быть преобразовано к линейному виду:

. (26)

Рассмотрим реальный водный объект, для которого процессы самоочищения и привноса неразделимы и практически всегда присутствуют. Фактический баланс всех процессов для реальных условий описывается уравнением:

. (27)

Имея продолжительный ряд наблюдений, как по гидрологическим, так и по качественным характеристикам водного объекта для каждого ЗВ, и их последующая математическая обработка по рекам Амурского и Байкальского бассейнам показала, что в реальных условиях зависимость приращения концентраций -того ЗВ () от приращения масс этого же вещества () в пределах участков водотока, ограниченных существующими стационарными створами, описывается линейным уравнением вида:

, (28)

где , , и – соответственно действительные массы и концентрации -того ЗВ в верхнем и нижнем створах водотока; и – соответственно значения углового коэффициента и свободного члена для этого же вещества, численные значения которых для рассматриваемых участков, для водотока в целом, а так же для разных водотоков – неодинаковы. Они учитывают как исторически сложившиеся условия формирования количественных и качественных показателей, так и уникальность бассейна, в пределах которого происходит их формирование.

Уравнение (28) позволяет: во-первых, приблизительно рассчитать массовый расход -того ЗВ или его концентрацию в любом створе; во-вторых, производить моделирование изменения приращения как массового расхода ЗВ, так и его концентрации в пределах выделенного, а так же на нижерасположенных участках, при разработке водоохранных программ; в-третьих, распределять планируемые нормативы допустимых воздействий между водопользователями, расположенными в пределах этого участка.

Известно, что ЗВ под­разделяются на консервативные и неконсервативные. В действующей методике комплексной оценки степени загрязненности поверхностных вод по гидрохимическим показателям четкого разделения веществ на консервативные и неконсервативные нет. Поэтому такое разделение следует, во многом, считать условным, поскольку в зависимости от водности года, гидравлического, термического и гидрохимического режимов «консервативность» или «неконсервативность» ЗВ проявляется в разной степени. В то же время, методика разработки НДВ предусматривает при их расчете применять коэффициент неконсервативности, а его численное значение определять на основании данных натурных наблюдений или по справочным данным и пересчитывать в зависимости от температуры воды и скорости течения. Из-за скудного количества или практически полного отсутствия данных определить значения коэффициента неконсервативности того или иного ЗВ, уточнить его справочное значение зачастую не представляется возможным.

Предлагается следующий методический подход к определению консервативности ЗВ. На рисунках 7 и 8 показаны линейные зависимости, описывающие трансформацию ЗВ в русле реки в пределах выделенного участка водотока как для условий «чистого разбавления» (линия 1), так и в природных водных объектах (линия 2).

 Трансформация неконсервативного ЗВ (биогенов) -224

Рис. 7. Трансформация неконсервативного ЗВ (биогенов)

Рис. 8. Трансформация консервативного ЗВ (СПАВ)

Анализ рисунков 7 и 8 позволяет выделить следующие характерные точки:

- Точка II показывает, что при выполнении данных условий в реальном водном объекте приращение массового расхода -того ЗВ происходит только за счет изменения расхода в пределах выделенного участка, концентрация же этого вещества на данном участке остается постоянной.

- Точка III показывает, что при выполнении данных условий в реальном водном объекте приращение массового расхода -того ЗВ происходит только за счет изменения концентрации в пределах выделенного участка, в то время как расход – остается постоянным.

- Точка IV показывает соотношение между «чистым разбавлением» и естественными процессами в водных объектах, которое зависит от вида ЗВ.

При равных значениях приращения концентраций для неконсервативных веществ, приращение массового расхода для реального водного объекта () будет меньше, чем для условий «чистого разбавления» (). Т.е. в реальном водном объекте с увеличением приращения концентрации усиливаются естественные процессы ().

Таким образом, существующая в настоящее время практика, когда самоочищающую способность водного объекта принимают в «запас» не всегда оправдана. В частности, для неконсервативных ЗВ следует ожидать увеличения поступления этих веществ за счет вторичного загрязнения. Для консервативных же ЗВ (см. рис. 8) соотношения вышеописанных процессов получаются прямо противоположными.

Следовательно, можно констатировать, что в реальном водном объекте в зависимости от водности года могут наблюдаться следующие характерные случаи:

1) С увеличением расхода изменение содержания -того ЗВ происходит только за счет преобладания процесса его привноса с сосредоточенным и диффузионным стоками с водосбора и его разбавления из-за увеличения притекающего расхода.

2) С уменьшением расхода процесс «механического» привноса и разбавления снижается, и начинают преобладать естественные процессы в водных объектах.

Это, в свою очередь позволяет доказать, что линейные зависимости, одна из которых, описывает процесс «чистого» «механического» разбавления, а другая, процессы, происходящие в реальном водном объекте, будут взаимно пересекающимися линиями (см. рис. 7 и рис. 8).

Рассмотрим точку VI – пересечение двух линейных зависимостей в которой «чистое разбавление» соответствует процессам в реальном водном объекте. Если сравнить общий вид уравнений (26) и (28), то они практически совпадают. Тогда результаты расчетов по этим уравнениям для рассматриваемого случая по среднегодовым данным так же должны быть равны:

.

Исходя из этого можно предположить, что если выполняются условия: первое: , где – погрешность измерения расхода воды в водотоке; и второе , где – погрешность определения концентрации -того ЗВ, то данное ЗВ является консервативным, в противном случае – неконсервативным для конкретных условий участка водотока.

Оценка степени консервативности вещества может быть произведена, в первом приближении, и по коэффициенту корреляции () экспериментальной зависимости (28). Для консервативных веществ значительно ниже, чем для неконсервативных.

Выразим из уравнения модуля трансформации -того ЗВ (6) приращение массового расхода () и подставив в уравнение (28), получим:

. (29)


Pages:     | 1 |   ...   | 4 | 5 || 7 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.