авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 || 4 |

Рельеф шельфа морей российской арктики

-- [ Страница 3 ] --

Глава 5. РЕЛЬЕФ ШЕЛЬФА И ЕГО ВЛИЯНИЕ НА РАСПРЕДЕЛЕНИЕ ОСАДКОВ

В соответствии с разработанной классификацией выполнено описание форм рельефа арктического шельфа.

Для баренцевоморского шельфа характерно преимущественно прямое соотношение тектонических структур и крупных форм рельефа, т.е. поднятым блокам и антиклиналям соответствуют подводные возвышенности, протяженные валы, отдельные острова или архипелаги, а опущенным сбросово-глыбовым структурам и синклиналям - депрессии, прогибы, желоба, впадины и пр. Среди положительных форм широкое распространение имеют морфоструктурные реликтовые, как надводные (окраинные и внутришельфовые архипелаги и острова), так и подводные возвышенности. Большинство островов представляет собой платообразные возвышенности. Подводные возвышенности (Мурманская, Демидовская, Центральная, Персея и др.) нередко вытянуты в длину на 200-250 км. Они имеют обычно довольно пологие склоны и выровненную поверхность со сравнительно маломощной толщей голоценовых осадков, часто осложненную моренными грядами.

Рельеф Печорского моря значительно отличается от Баренцева, что связанно не только с особенностями структурного строения, но и характером проявления экзогенных, особенно палеогеографических процессов. Широкое развитие ледниковых моренных образований в Баренцевом море и их полное отсутствие в Печорском свидетельствует о разной истории развития этих регионов в позднечетвертичное время. В пределах Печорского моря выделяются следующие крупные элементы морского дна: 1 – внутренний шельф (подводный береговой склон), 2 – субгоризонтальная равнина среднего шельфа и 3 – борта и днище Южно-Новоземельского желоба (далее ЮНЖ) и Коротаихинский впадины. Большая часть шельфа Печорского моря представляет собой сочетание субгоризонтальных и наклонных равнин. Внутренняя абразионно-аккумулятивная часть шельфа (подводный береговой склон) расположена на прибрежном мелководье. Она сформирована современными гидродинамическими процессами и осложнена экзогенными формами рельефа небольшого размера разного генезиса. Центральный (или средний) шельф Печорского моря расположен вне зоны современных волновых процессов и осложнен реликтовыми аккумулятивными, абразионными и эрозионными формами рельефа. В пределах Печорского шельфа прослеживается ряд крупных долинообразных понижений, направленных от континентального берега к ЮНЖ, которые идентифицируются палеодолины рек: (с запада на восток) Пёша, Нерута, Печора, Море-Ю и Коротаиха. Поверхностные осадки представлены голоценовыми осадками, которые подстилаются со стратиграфическим перерывом более древними (позднеплейстоценовыми) глинами.

Карское море находится на границе гляциального и перигляциального шельфа Арктики. Современный рельеф Карского моря представлен сложным сочетанием структурных, структурно-скульптурных и скульптурных его элементов разного генезиса и возраста. На глубинах более 100 м преобладают поверхности морского аккумулятивного выравнивания, на глубинах 60100 м доминируют абразионно-аккумулятивные поверхности, а на меньших глубинах широко развиты абразионные уровни. Уклоны поверхности дна изменяются в основном от 0,001 до 0,0010,005 (tg). Формирование структурной основы рельефа произошло в новейшее время, а его преобразование в современном виде главным образом в четвертичное время на фоне колебаний уровня моря. Осадки в Карском море имеют преимущественно пелитовую и алевритовую размерность.

В подводном рельефе моря Лаптевых заметную роль играют субаэральные формы - древние долины и уровенные поверхности последней трансгрессии моря. Большая часть шельфа представлена слабо наклоненной на север ступенчатой аккумулятивно-денудационной морской равниной, в которой затопленная гидросеть выделяется довольно отчетливо. На прибрежном мелководье развиты абразионные и аккумулятивные формы на шельфе отмечаются холмы, увалы и гряды с относительным превышением до 20 м. Скульптурный рельеф в значительной мере представлен морскими гидрогенными формами (эрозионного, абразионного и аккумулятивного типов), разновидностями субаэрального флювиального генезиса и термокарста, а также подводными дельтами, отложениями гравитационных смещений осадочного материала. Большая часть дна моря Лаптевых покрыта илами, чистыми или с различной примесью алеврита и песка. Чистые или слабо заиленные пески распространены только по периферии дельты р.Лены.

Восточно-Сибирское море является окраинным, типично шельфовым, мелководным и наиболее ледовитым морем Российской Арктики.

Внутренний шельф Восточно-Сибирского моря из-за резкой ослаблености волновых процессов характеризуется крайне выположенным рельефом с углом наклона около 0,00010,0003. Подобная выположенность рельефа на прибрежном мелководье явно противоречит общепринятым представлениям и является одним из характерных признаков описываемой зоны. Это связано с ограниченным во времени волновом воздействием на дно и наличием длительно не разрушающегося ледового экрана.

Одной из главных особенностей рельефа шельфа Восточно-Сибирского моря является наличие большого количества аккумулятивных гряд, которые осложняют выровненный рельеф шельфа вдоль берегов островов Жохова, Новая Сибирь, Вилькицкого, Фаддеевского, Земля Бунге и побережья Якутии. Они развиты на расстоянии до 60 км от берега, в значительной степени повторяют очертания последних и распределяются сериями, каждая из которых отделяется депрессиями. Величина гряд значительна, и некоторые из них достигают 150 км длины, 2030 км ширины и 20 м относительной высоты. Гряды обнаруживают высокую ритмичность чередования с межгрядовыми понижениями (в районе о-ва Бунге размер ритма составляет около 10 км), что свойственно морским волновым формам, а не ледниковым образованиям. Их многократное возникновение и ритмичность свидетельствуют об унаследованном развитии. Следует особо подчеркнуть структурное значение унаследованных форм типа баров. В настоящее время хорошо известно, насколько чутко реагируют береговые аккумулятивные формы на положение и активность погребенных геологических структур. Поэтому по геоморфологическим признакам можно предположить существование в этих районах погребенных антиклинальных и брахиантиклинальных складок (не исключено, перспективных для поиска нефтегазовых месторождений). В условиях развития грядового рельефа на внутреннем шельфе Восточно-Сибирского моря формируется специфический гидродинамический режим, связанный с длительной подледной седиментацией и периодическим взмучиванием материала волнением, что приводит к перераспределению и анормальному распределению осадочного материала.

Современный рельеф Чукотского шельфа представлен формами волновой абразии и аккумуляции (внутренний шельф), а также аккумулятивным рельефом, созданным в результате процессов нормального морского осадконакопления (центральный и внешний шельф). В той или иной степени субаквальными процессами преобразован рельеф всего шельфа. Интенсивность и характер проявления рельефообразующих процессов на различных участках значительно отличаются друг от друга. Внутренний шельф на аккумулятивных участках сложен, как правило, хорошо сортированным (So=1,11,4) песчаным материалом (до 8090%) с преобладанием мелкопесчаной фракции. Абразионные участки внутреннего шельфа характеризуются приглубостью, незначительной шириной и грубозернистыми осадками. Несмотря на ряд отличительных признаков аккумулятивных и абразионных участков внутреннего шельфа, имеется их важное сходство широкое развитие субаквальных реликтовых форм рельефа, морфологически выраженных в виде валообразных возвышений (подводных баров), абразионных уступов, подводных террас и других форм, фиксирующих относительные стабилизации уровня позднеплейстоцен-голоценовой трансгрессии. Эти реликтовые формы рельефа являются характерными элементами для всего внутреннего шельфа этой акватории. В целом, внутренний шельф Чукотского моря представляет собой унаследовано развивающуюся (как минимум с начала послеледникового времени) геолого-геоморфологическую зону с реликтовыми аккумулятивными формами, приуроченными к современному аккумулятивному побережью, а затопленных клифов и абразионных террас к абразионному.

Центральный и внешний шельф Чукотского моря относятся к областям современной неволновой аккумуляции. Обширные субгоризонтальные равнины центрального шельфа характеризуются исключительной выровненностью и малыми углами наклона поверхности. Образование равнин неволновой аккумуляции связано с повышенными скоростями современной аккумуляции. В Чукотском море обширная равнина неволновой аккумуляции охватывает всю центральную часть шельфа и имеет площадь более 50 тыс. км2.

На шельфе Чукотского моря выделяется ряд затопленных речных долин, причем некоторые из них полностью погребены под толщей голоценовых осадков. Одним из основных источников поступления осадочного материала является Беринговоморское течение, поставляющее в Чукотское море большое количество взвешенного материала, значительная часть которого осаждается в пределах Центрально-Чукотской равнины (по мнению многих исследователей, тихоокеанские воды являются основным источником питания Чукотского моря осадочным материалом).

Глава 6. МЕТОДИКА СОЗДАНИЯ ЦИФРОВОЙ МОДЕЛИ РЕЛЬЕФА

В работе разработаны детальные и современные методы изучения рельефа, которые имеют апробированное научное обоснование.

Целью методических работ являлось: создание цифровой модели рельефа на основе анализа данных натурных исследований и картографического материала в ГИС формате с целью решения фундаментальных и прикладных задач.

По территориальному охвату цифровая модель рельефа относится к глобальной или планетарной интегрированной ГИС.

Цифровые модели открывают огромные возможности и позволяют построение цифровых карт любого масштаба без потери первоначальной нагрузки и информативности, а также различных 3-х мерных изображений и анимации, проводить совмещение с другими данными, выполнять сравнительный математический анализ и т.д. Особое значение цифровая модель рельефа имеет для геоакустических исследований.

Ручная обработка карт и определение происхождения рельефа на предварительной стадии обработки материала имеют принципиальное значение и являются необходимым условием морского картирования рельефа, включая создание цифровой модели. Без понимания генетических особенностей картографируемых форм невозможно их объективное и обоснованное изображение. Механическая компьютерная обработка массива глубин не выявляет особенностей и, главное, генезиса рельефа

Методика создания цифровой модели рельефа состоит из следующих этапов:

  1. Выбор картографической основы.
  2. Подготовка авторских оригиналов карт к созданию цифровой модели - ручная обработка карт и проведение комплексного анализа имеющегося геофизического, геологического, геоморфологического материала, включая эхолотные профили натурных исследований, с целью выявления морфоструктурных особенностей и генезиса рельефа.
  3. Сканирование информации.
  4. Обработка растровых образов карт, включая изменение цветовой модели и ориентации изображения (например, с помощью растрового редактора Corel Photo Paint 12).
  5. Пересчет и построение координатных сеток (например, в Auto Cad Map)
  6. Векторизация объектов батиметрических карт (например, при помощи специализированного векторизатора EasyTrace 7.0).
  7. Экспорт полученных результатов в проекты ArcView 3.2a.
  8. Трансформация векторных слоёв в географические координаты в приложении ArcView Register and Transform.
  9. Пересчет векторных слоёв отдельных листов карт из исходной проекции Меркатора с различными параметрами широт истинного масштаба в проекцию North_American_1927, Spheroid Clarke_1866 (decimal degrees) при помощи модуля ArcView Projection Utility.
  10. Cбивка листов векторной графики.
  11. Редактирование, внесение изменений, геометрическая корректировка цифровых моделей карт, проверка информации атрибутивных таблиц в ArcView 3.2a и создание цифровой модели рельефа.

В результате проведённых работ сделано следующее:

  1. Проанализированы возможности математической основы и выбраны оптимальные пути для внедрения ГИС-технологий при обработке данных о рельефе.
  2. Определены приемы обработки картографического материала на основе морфогенетического подхода.
  3. Построена цифровая модель рельефа.
  4. Предусмотрен пересчет проекций, что особенно важно при анализе и совмещении сухопутных и морских карт.
  5. Определена методика построения карт рельефа, трехмерных изображений рельефа, анимации рельефа.
  6. Предусмотрено построение тематических карт с возможным наложением на батиметрию осадков и других характеристик как послойных файлов.

Новизна предлагаемой методики, основанной на широком внедрении ГИС технологий, заключается в следующем.

В области фундаментальных исследований – в разработке морских карт нового качества с учетом все возрастающих требований практики к их содержанию и проведению океанологического мониторинга на новом уровне.

В области коммуникационных технологий – в обмене больших массивов данных через Интернет, а также создании, как составной части, всемирного банка данных.

В области картографии – в выборе оптимальных проекций для специальных карт с возможностью совмещения морских и сухопутных карт, в разработке новых, более прогрессивных приемов составления морских карт.

В прикладной области – в навигации, инженерно-строительных работах, проведении аварийно-спасательных мероприятий. Особое значение цифровая модель рельефа имеет для геоакустических исследований и расчетов.

Используя методику создания цифровых моделей рельефа были построены цифровые карты рельефа в ГИС-формате для ряда районов шельфа арктических морей РФ (рис.4, 5 и 6).

Рис. 4. Рельеф юго-западной части Карского моря в ГИС формате

Рис. 5. Рельеф южной части шельфа Баренцева моря (по данным цифровой модели рельефа)

 Рельеф восточной части моря Лаптевых. Учитывая большое значение данных-5

Рис. 6. Рельеф восточной части моря Лаптевых.

Учитывая большое значение данных методических решений, актуальность, перспективы и получение результатов на новом уровне, возможно выделение «геоинформационной геоморфологии» как нового направления морской геоморфологии в рамках Наук о Земле. «Геоинформационная геоморфология» - эта направление в науке, которое изучает рельеф земной поверхности, происхождение (генезис) и закономерности его развития с целью создания цифровых моделей и глобальных планетарных баз данных на основе использования ГИС-технологий.

Развитие подобных исследований возможно только на стыке разных отраслей знаний при этом геоморфологические исследования должны являться основой для изучения морфологии и динамики рельефа. Геоинформационная геоморфология, должна обеспечивать решение широкого комплекса специальных задач, включая создание единого информационного поля океанографических и гидрографических данных, а именно:

  • повышение эффективности системы навигационно-гидрографического обеспечения морской деятельности в целом;
  • сопряжение информационных центров различных ведомств о Мировом океане на базе единых нормативных и информационно-технологических стандартов;
  • обеспечение доступа гражданских пользователей к открытой информации о природной среде Мирового океана,
  • создание комплексной системы безопасности.

К основным направлениям использования данной информации относятся:

  • оценка изученности Мирового океана и планирование работ по специальному изучению Мирового океана;
  • выполнение научно-прикладных исследований;
  • навигационно-гидрографическое обеспечение;
  • создание комплексной системы обеспечения безопасности при освоении морских нефтегазоносных месторождений и т.д.

Таким образом, «геоинформационная геоморфология», позволит определить характер и изменчивость рельефа на принципиально новом технологическом уровне и должна являться составной частью морской доктрины Российской Федерации.

Глава 7. ПРОВЕРКА сопоставлениЯ ЦИФРОВОЙ МОДЕЛИ рельефа С натурныМИ ДАННЫМИ (на примере южной части Баренцева моря)

Разработанные принципы построения модели рельефа, основанные на морфогенетических и геохронологических принципах, являются достоверными. Точность модели была проверена во время натурного эксперимента в Баренцево море (НИС «Академик Сергей Вавилов», 21 рейс). Натурный эксперимент проводился в условиях резко расчлененного рельефа с перепадом глубин более 100м. Сигналы эхолота-профилографа вместе с навигационной информацией, временем и глубиной, записывались в цифровом виде. При обработке сигнала учитывалась реальная поправка на прохождение по профилю скорости звука. В тех же координатах и с той же частотой была сделана выборка глубин из созданной модели рельефа.

Для шести галсов среднее значение разностей измеренного рельефа и полученного по цифровой модели составило около 4% (рис.7).

Рис. 7. Профили рельефа морского дна: синий – профили, полученные в ходе натурного эксперимента, красный – из геоакустической модели.

Аналогичная проверка была проведена в другом регионе Баренцева моря, где разность измеренного рельефа и полученного по цифровой модели по 18 профилям составило около 3% (рис.8).

 Сравнение модели рельефа с натурными данными в другом районе Баренцева моря-7

Рис.8. Сравнение модели рельефа с натурными данными в другом районе Баренцева моря (условные обозначения те же)

Сравнение данных профилирования морского дна при проведении натурного эксперимента с аналогичными профилями, построенными по модели рельефа, свидетельствует о хорошем соответствии его строения.

Глава 8. РЕЛЬЕФ КАК ОСНОВА ГЕОАКУСТИЧЕСКОЙ МОДЕЛИ МОРСКОГО ДНА (на примере южной части Баренцева моря).

Геоакустическая модель описывает распределение в пространстве акустических параметров морского дна. Геологический подход на основе морфологического, литологического и структурного анализа – наиболее рациональный путь получения информации для обширных акваторий при геоакустическом моделировании. Для описания акустических свойств дна, необходимых для решения прикладных задач гидроакустики, по трассе распространения звука необходимо знать:



Pages:     | 1 | 2 || 4 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.