авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 3 | 4 ||

Эвапотранспирационная миграция химических элементов в ландшафтах (на примере урала)

-- [ Страница 5 ] --

Примечание. Звездочкой отмечены значения (r), которые меньше табличных критических значений коэффициента корреляции Пирсона для 5%-ного уровня значимости.

Роль эвапотранспирационных процессов в массопереносе химических элементов с атмосферными осадками.

Вопрос о влиянии эвапотранспирации на химический состав атмосферных осадков в литературе остается нерешенным, хотя первые попытки по его изучению были сделаны еще в 70-е гг. ХХ в. (Ахмедсафин, Гребенюков, Иванов, 1978). Исследования, проведенные автором, позволяют решить данную проблему.

Было выполнено сопоставление состава конденсатов выделений растений среднетаежных ландшафтов в атмосферу и атмосферных осадков (внутримассового и фронтального происхождения) в теплое время года. Можно констатировать значительное варьирование концентраций элементов в изученных объектах. Определены следующие диапазоны (в мкг/л). В группе главных элементов: S — 1000 n, Na, K, Ca — 100 n—1000 n, Mg — 10 n—1000 n, Si, Fe — 10 n—100 n, Al, P — n—100 n. В группе рассеянных элементов: Mn, B, Br, Sr, Ba — n—10 n, Ti, Cr, Rb, I — 0,1 n—n; для подавляющего большинства элементов — 0,001 n—0,1 n.

Установлено, что степень сходства химического состава двух сравниваемых объектов закономерно возрастает в рядах: фронтальные осадки вне контакта с растительностью — фронтальные трансформированные растительностью осадки, внутримассовые осадки вне контакта с растительностью — внутримассовые трансформированные растительностью осадки. Полученные результаты можно объяснить следующим. Фитогенные частицы выступают в роли ядер конденсации и, соответственно, влияние жизнедеятельности растений проявляется как в самом процессе осадкообразования, так и в химическом составе осадков. Дополнительно элементный состав жидких выпадений изменяется в процессе растворения дождевыми каплями продуктов выделений растений. В условиях эксперимента разделить эти трансформации невозможно.

Анализ коэффициентов корреляции между содержанием элементов в конденсатах и дождевой воде (r) доказал наличие положительной корреляционной связи; в подавляющем большинстве рассмотренных вариантов (31 из 40) корреляционную связь потоков можно считать доказанной.

Данная взаимосвязь отражает наличие в ландшафтах круговоротов вещества, причем при внутримассовой погоде они в большей мере замкнуты, чем при фронтальной погоде.

Также заключено, что элементный обмен между ассимилирующей поверхностью растений и атмосферой не только оказывает важное влияние на химический состав осадков, но и является одной из причин внутримассовых осадков (Мельчаков, Суриков, 2007).

В качестве гипотезы предложено объяснение летнего увеличения количества осадков в среднегорьях Урала по сравнению с предгорьями, наряду с известными причинами, наличием больших масс фитогенных аэрозолей (Мельчаков, Суриков, 2004). Последние выполняют роль ядер конденсации. Вероятно, это относится и к другим горным системам.

Выводы:

1. Установлена положительная корреляционная связь массопотоков: эвапотранспирация и атмосферные выпадения - применительно к подавляющему большинству рассмотренных групп элементов. Отмеченные массопотоки являются наиболее тесно связанными: они пронизывают нижние слои тропосферы и количество факторов, осложняющих эту связь, меньше в сравнении с другими изученными потоками. Значения коэффициентов корреляции в среднетаежных ландшафтах Северного Урала выше, чем в степных ландшафтах Южного Урала.

2. Установлено, что аэральный поток продуктов эвапотранспирации ослабляет дисбаланс масс элементов, являясь своеобразным «разгрузочным механизмом» функционирования геосистем, так же как опад и сток. В среднетаежных ландшафтах Северного Урала итоговое соотношение приходно- расходной частей биогеохимических циклов элементов = -420 кг/км2 . год (с учетом эвапотранспирации) или +1290 кг/км2 · год (без ее учета). Аналогичное соотношение в степных ландшафтах Южного Урала =+3680 кг/км2 · год или +4200 кг/км2 · год (без учета эвапотранспирации). Следовательно, эвапотранспирация менее эффективно ослабляет дисбаланс по сравнению с таежными ландшафтами.

3. Доказана соразмерность и взаимосвязанность миграционных процессов: атмосферных выпадений, эвапотранспирации, опада и выноса с речным стоком. Эти характеристики являются важными показателями нормального функционирования ландшафтов и их устойчивости как к природным, так и техногенным дестабилизаторам.

4. Показано, что степень сопряженности миграционных процессов убывает в пространственном ряду: тайга — степь. Возможно, это обусловлено более весомой ролью живого вещества в организации взаимосвязанности массопереносов в гумидных, чем в семиаридных ландшафтах.

5. Определено, что в аэральном потоке продуктов эвапотранспирации возрастает относительное значение рассеянных элементов, массы которых относительно невелики, по сравнению с их относительной ролью в биологическом круговороте в узком смысле слова. Для растений образование летучих соединений, возможно, является дополнительным способом освобождения от токсичных соединений.

6. Обнаружена положительная корреляционная связь состава транспирационных выделений в атмосферу и дождевых осадков.

7. Констатирована ошибочность представления об атмосферных выпадениях на полянах как нетрансформированных растительностью.

8. Сравнительный анализ массопотоков северо - и южноуральских горно-таежных ландшафтов показал наличие значительных буферных возможностей последних.

9. Установленные закономерности должны учитываться при проведении комплексных мероп­риятий по охране и рацио­нальному природопользованию.

Защищаемые положения и выводы

1. Разработана методология изучения эвапотранспирационной миграции химических элементов в ландшафтах. На основании проведенных исследований раскрыты ее закономерности в ландшафтах Северного, Среднего и Южного Урала, которые позволяют объяснить направленность происходящих процессов.

2. Выявлены закономерности аэрального массопотока в системе «тропосфера — растительность — почва» применительно к природным условиям Урала.

— Впервые определены количественные параметры суммарных атмосферных выпадений большинства элементов на Урале. Установлено, что в таежных ландшафтах ежегодно поступает из атмосферы на 1 км2: Са и K — 1000 n кг; Mg, S, Na, Fе, Si и Мn —
100 n кг; Al, P, Sr, Ba, Zn, Cu — 10 n кг; B, Pb, Ti, Cr, Ni и других элементов — n кг; V, Cd, As, Se и других элементов — 100 n г. Представители группы редких земель и некоторые другие элементы поступают в таежные ландшафты в количестве, измеряемом 1 n—10 n г/км2 · год. Приведенные значения характеризуют поток атмосферных выпадений, усиленный взаимодействием с растительным компонентом.

— Обнаружены сезонные количественные отличия аэрального массопотока. Выпадения большинства элементов за теплый период года превосходят значения холодного периода в n раз — на порядок. Суммарное выпадение элементов в теплый период года составляет 92 % годового массопотока. Указанный тренд закономерен: зимой активность живого вещества значительно замедляется, соответственно ослабевает воздействие полога леса на атмосферные выпадения и уменьшаются масштабы аэрального потока продуктов эвапотранспирации. Сезонный тренд указывает на важную роль биоклиматических факторов в рассматриваемом массопотоке.

Вблизи источников загрязнения атмосферного воздуха, в отличие от исследуемого фонового района, сезонные тренды могут быть обусловлены явлениями чисто техногенного характера (флуктуациями выбросов поллютантов в атмосферу) или изменениями природных процессов, которые накладываются на существующую техногенную основу (например, меняется роза ветров).

— Установлены и проанализированы сезонные различия влияния древесных растений на состав атмосферных выпадений: в холодное время года данное влияние проявляется нестабильно. Трансформация атмосферных выпадений пологом леса в теплый период года усиливается.

3. Определены особенности геохимии эвапотранспирации в ландшафтах таежной и степной зон Урала.

— Впервые выявлены масштабы аэрального потока продуктов эвапотранспирации в системе «почва — растительность — тропосфера» применительно к природным условиям Урала. Установлено, что в таежных ландшафтах Урала ежегодно с 1 км2 мобилизуется в атмосферу: Са, S, Na и K — 100 n кг, Fе, Mg, Si и Al — 10 n кг, P, Mn, B, Sr, Ba, Zn и Cu — n кг, Ti, Br, Cr, Pb, Se, Ni —
100 n г, Li, Zr, Sc, V, Sb, Ag, Cd, Sn, As, Ga, Hg и Со — 10 n г. Многие рассеянные элементы переносятся в количестве, измеряемом 0,1— 1 n г/км2 · год.

Изученный поток суммы анализируемых элементов в таежных ландшафтах составляет 27—33 % от таких значимых процессов, как атмосферные выпадения и вынос с речным стоком соответственно.

— Обнаружено, что в массопотоке, вызванном эвапотранспирацией, возрастает относительное значение тяжелых металлов и близких им элементов, массы которых невелики, по сравнению с участием их масс в биологическом круговороте. Возможно, это свидетельствует о выработанном растениями в процессе эволюции механизме избавления от токсичных элементов путем транспирации.

— Установлена связь состава конденсатов эвапотранспирационных выделений с местоположениями изученных участков. Констатировано увеличение концентраций элементов в конденсатах горно-таежного пояса по сравнению с подгольцовым, что объясняется биоклиматическими факторами. Как следствие, значения аэрального потока продуктов эвапотранспирации применительно к большинству элементов в горно-таежном поясе в несколько раз превышают соответствующие значения для подгольцового пояса (по сумме элементов в 2,7 раза).

— Определен относительный вклад лесных ярусов в аэральный поток продуктов эвапотранспирации. В горно-таежном поясе эвапотранспирация травяно-кустарничкового яруса составляет 92 %, древесного яруса – 8 % от общего массопотока. Соответствующие параметры подгольцового пояса принципиально иные: в нем эвапотранспирация травяно-кустарничкового яруса составляет 42 %, древесного яруса – 58 % от общего массопотока.

4. Выявлены зональные различия аэральной миграции химических элементов в пределах Урала.

— Атмосферный массопоток большинства элементов в степных ландшафтах больше в n раз, чем в таежных, соответственно суммарное значение выпадений элементов отличается в 1,9 раза.

— Поток масс элементов, вызванный эвапотранспирацией, в степных ландшафтах меньше в n раз, чем в таежных, соответственно суммарное значение транспорта элементов отличается в 3,4 раза.

5. Установлено, что аэральный поток продуктов эвапотранспирации является необходимой частью баланса мигрирующих масс элементов, являясь своеобразным «разгрузочным механизмом» функционирования геосистем. При этом поток вещества, вызванный эвапотранспирацией, вовлекается в следующий биогеохимический цикл.

— В среднетаежных ландшафтах Северного Урала величина аэрального потока продуктов эвапотранспирации применительно к сумме элементов имеет порядок 1,7 т/км2 · год.

— В степных ландшафтах Южного Урала этот же параметр оценивается величиной порядка 0,5 т/км2 · год.

Список работ, опубликованных по теме диссертации

Автор 57 публикаций по теме диссертации. Из них 3 монографии общим объемом 53,9 п.л. (авторский вклад 53,3 п.л.-95 %), 39 статей общим объемом 19,6 п.л. (авторский вклад 17,3 п.л.-88 %), в т.ч. 14 статей в центральных журналах (из Перечня, рекомендованного ВАК РФ) общим объемом 7,0 п.л. (авторский вклад 6,5 п.л. - 93 %), учебно-методические материалы объемом 5,5 п.л. (авторский вклад 5,5 п.л.-100 %).

Монографии:

1) Мельчаков Ю.Л. Роль эвапотранспирации в системе миграционных потоков химических элементов: монография / Екатеринбург: Урал. гос. пед. ун-т, 2007. —326 с. 24,4 п.л.

2) Мельчаков Ю.Л. Атмосферная миграция химических элементов на Урале: монография / Екатеринбург: Урал. гос. пед. ун-т, 2005. — 420 с. 26,4 п.л.

3) Алещукин Л.В., Волков С.Н., Добровольский В.В. и др. Геохимия природных и техногенно измененных биогеосистем: коллективная монография под ред.

проф. В.В. Добровольского — М.: Прометей, 2003. 228 с. – 14,25 п.л. (авт. вклад статьи: Мельчаков Ю.Л., Учватов В.П., Суриков В.Т., Поляков Е.В. Фитогенный атмосферный массообмен: количественная оценка потоков «растительность — атмосфера» // С. 112—161.– – 3,6 п.л. - 25%). Доля участия Мельчакова Ю.Л.- 3,0 п.л. - 83%.

Статьи в центральных журналах (из Перечня, рекомендованного ВАК РФ):

4) Мельчаков Ю.Л. Роль эвапотранспирации в системе миграционных потоков химических элементов (на примере Северного Урала) // Вестник МГУ. Сер. География. 2009. № 3. С. 2633. - 0,8 п.л.

5) Мельчаков Ю.Л. Балансы элементов и роль эвапотранспирационного массопереноса в ландшафтах Северного и Южного Урала // Известия РГО. 2005б. Т. 137. Вып. 5. С. 6979. - 0,9 п.л.

6) Мельчаков Ю.Л. Сравнительно-географические особенности массопереноса эвапотранспирационных выделений таежной и степной растительности Урала // Вестник МГУ. Сер. География. 2006. № 4. С. 5561. - 0,8 п.л.

7) Мельчаков Ю.Л. Закономерности элементопереноса в системе «почва атмосфера» (на примере Северного Урала) // Литосфера. 2008. № 2. С. 133138. - 0,5 п.л.

8) Мельчаков Ю.Л., Суриков В.Т. Роль биогеохимических процессов в массопереносе химических элементов с атмосферными осадками (на примере Северного Урала) // География и природные ресурсы. 2007. № 1. С. 8390. - 0,6 п.л. (авт. вклад 75%).

9) Мельчаков Ю.Л. К проблеме эколого-геохимического значения эвапотранспирации // Экология. 2008. № 5. С. 390393. - 0,3 п.л.

10) Мельчаков Ю.Л., Суриков В.Т. Сравнительная оценка интенсивности эвапотранспирационного массоэлементопереноса в таежных ландшафтах Северного и Среднего Урала // Экология. 2006. № 1. С. 7476. - 0,4 п.л. (авт. вклад 75%).

11) Melchakov Yu. L. On Ecological and Geochemical Significance of Evapotranspiration // Russian Journal of Ecology. 2008. V. 39. N 5. P. 371374. - 0,3 п.л.

12) Melchakov Yu. L., Surikov V.T. Comparison of the Intensities of Evapotranspiration Mass Element Transfer in Taiga Landscapes of the Northern and Middle Urals // Russian Journal of Ecology. 2006. V. 37. N 1. P. 7072. - 0,4 п.л. (авт. вклад 75%).

13) Мельчаков Ю.Л., Учватов В.П., Квашнина А.Е. и др. Исследование геохимических потоков в фоновых ландшафтах Северного Урала // География и природные ресурсы. 2004. № 4. С. 7478. - 0,6 п.л. (авт. вклад 67%).

14) Мельчаков Ю.Л. Соотношение атмосферной и водной миграции с биологическим круговоротом тяжелых металлов в горно-лесном ландшафте // Научные доклады высшей школы. Биологические науки. 1989б. № 9. С. 2832. - 0,6 п.л.

15) Мельчаков Ю.Л. Аэрозольное поступление тяжелых металлов в южнотаежные ландшафты Среднего Урала // Экология. 1985. № 2. С. 8082.-0,2 п.л.

16) Мельчаков Ю.Л. Сезонная динамика водной миграции тяжелых металлов в условиях техногенного загрязнения // География и природные ресурсы, 1990б, № 2. С. 4749. - 0,3 п.л.

17) Мельчаков Ю.Л. Загрязнение воздушного бассейна неприоритетными для данного типа техногенеза химическими элементами // География и природные ресурсы. 1992, № 1. С. 3539. - 0,3 п.л.

Статьи в журналах и сборниках:

18) Добровольский В.В., Мельчаков Ю.Л. Динамика массообмена металлов в ландшафтно-геохимических условиях Среднего Урала // Труды биогеохимической лаборатории АН СССР. М.: Наука, 1990. Т. ХХI. С. 89—99. - 0,9 п.л. (авт. вклад – 78%).

19) Мельчаков Ю.Л. Геоэкология эвапотранспирационных потоков химических элементов (на примере Урала). // География и современные проблемы естественнонаучного познания: Материалы Всероссийской научно-практической конференции. Екатеринбург, 2009. С. 107—111. - 0,3 п.л.

20) Mel’chakov Yu. L. Some regularities of аtmospheric biogeochemical cycles of chemical elements // Ecologica. 2009. N 56. P. 50—56. 0,4 п.л.

21) Мельчаков Ю.Л. Масштабы эвапотранспирационного элементопереноса в фоновых условиях и в зоне техногенного загрязнения // Экологическая геология: научно-практические, медицинские и экономико-правовые аспекты: Материалы Международной научной конференции. Воронеж, 2009. С. 38—41. - 0,3 п.л.

22) Mel’chakov Yu. L. The Regional Pollution by Mass Element Transfer in System “Soil – Plants – Atmosphere”. // International Conference on Globalization and Environment. Belgrade, 2009. Р. 41—45. - 0,3 п.л.

23) Mel’chakov Yu. L. The Ecological and Geochemical Effect of Evapotranspiration in Taiga Landscapes of the Urals. // International Conference on Globalization and Environment. Belgrade, 2009. Р. 50—53. - 0,3 п.л.

24) Мельчаков Ю.Л., Квашнина А.Е., Возьмитель К.А., Суриков В.Т., Поляков Е.В. Количественная оценка атмосферной составляющей баланса вещества в горных ландшафтах Северного Урала // Тр. гос. заповедника «Денежкин Камень». Вып. 2. Екатеринбург: Академкнига, 2003. С. 94—101. - 0,8 п.л. (авт. вклад – 80%).

25) Мельчаков Ю.Л., Суриков В.Т., Поляков Е.В. Влияние химизма горных пород на фитогенную атмосферную миграцию элементов // Александр Гумбольдт и исследования Урала: Материалы российско-германской конференции 20—21 июня 2002 г., Екатеринбург, 2002 г. С. 143—150. - 0,5 п.л. (авт. вклад –60%).

26) Мельчаков Ю.Л., Суриков В.Т., Поляков Е.В. Побережнюк С.В. Временная изменчивость фитогенной миграции элементов в южнотаежных ландшафтах Среднего Урала // Александр Гумбольдт и исследования Урала: Материалы российско-германской конференции. Екатеринбург, 2002. С. 150—155. - 0,4 п.л. (авт. вклад –50%).

27) Мельчаков Ю.Л., Ремез В.П., Пушкарева Т.А. Шлейнов Б.Б. Провинциальные особенности распределения элементов в пределах Уральской горной страны // Урал в научных исследованиях на географо-биологическом факультете УрГПУ. Екатеринбург, 2001. С. 63—66. - 0,2 п.л. (авт. вклад –75%).

28) Mel’chakov Yu. L. The Research of Mass Element Transfer in System “Soil – Plants – Atmosphere” (the North and Middle Urals) // International Scientific Quality of Air Protection 2008, Belgrade, 2008. P. 127—130. - 0,3 п.л.

29) Мельчаков Ю.Л., Суриков В.Т. Визуальные наблюдения за воздушной средой Урала для определения источников природных и техногенных загрязнений // Исследовано в России. 2004. № 74. С. 812—821. - 0,6 п.л. (авт. вклад –67%).

30) Мельчаков Ю.Л., Суриков В.Т. Суриков В.Т., Поляков Е.В. Методические подходы к количественной характеристике движения масс элементов в системе «растительность – атмосфера» // Урал в научных исследованиях на географо-биологическом факультете УрГПУ. Екатеринбург, 2001б. С. 58—61. - 0,2 п.л. (авт. вклад –75%).

31) Добровольский В.В., Мельчаков Ю.Л. Атмосферные выпадения сульфат-иона, никеля и кобальта в ландшафтах Среднего Урала // Геохимические исследования в лесных и тундровых ландшафтах: межвузовский сборник научных трудов. М., 1986. С. 61—67. - 0,4 п.л. (авт. вклад –75%).

Учебно-методические материалы:

32) Мельчаков Ю.Л. Окружающая среда: контроль и рекомендации. Ч.1. / Екатеринбург: Урал. гос. пед. ун-т, 1999. — 58 с. - 5,5 п.л.



Pages:     | 1 |   ...   | 3 | 4 ||
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.