авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 5 |

Эвапотранспирационная миграция химических элементов в ландшафтах (на примере урала)

-- [ Страница 2 ] --

Сложную проблему представляет установление источников парогазового потока тяжелых металлов и близких им элементов с переменной валентностью (Добровольский, 2003а). Один из них — деятельность бактерий, плесневых грибов и высших растений.

Несмотря на недостаточную изученность этих процессов, принципиальная схема вовлечения химических элементов в атмосферную миграцию в системах «почва — атмосфера» и «растительность — атмосфера» известна и показана в ряде работ (Баргальи, 2005; Башкин, Касимов, 2004; Заварзин, 2004; Исидоров, 1985; Квеситадзе, 2005; Bargagli, 1993; Bunce, 1994; Griffitts, Skilleter, 1991; Selenium …, 1994; Winfrey, Rudd, 1990).

Известны некоторые оценки фитогенного массопереноса (Artaxo, Storms, Bruynseels et al.,1988; Beaufort et al., 1975, 1977; Nriagu, 1989).

В целом анализ специальной литературы позволяет сделать следующие выводы: 1. В настоящее время нет достаточно полного представления по рассматриваемой проблеме, данные разных авторов могут различаться в разы и даже на порядок. 2. В комплексе атмосферной миграции эвапотранспирация является одной из наименее изученных, не показано ее соотношение с другой ветвью аэральной миграции: атмосферными выпадениями — в пределах какого-либо региона. 3. Некоторые из источников потока элементов в атмосферу характеризуются небольшими абсолютными величинами массопереноса. Однако с учетом правила суммирования малых геохимических доз в масштабе геологического и педологического времени последствия биогеохимического круговорота подвижных форм элементов становятся чрезвычайно существенными (Касимов, 2006).

Глава 2. Физико-географическая характеристика ключевых участков

При планировании ключевых участков (рис. 1) были учтены методические приемы, применяемые при почвенных, гидрохимических, ланд­шафтно-геохимических, ландшафтных и других исследованиях.

Физико-географическая характеристика ключевых участков дается по компонентам: рельеф и геологическое строение, климат, воды, растительность, почвы. Дополнением к традиционной физико-географической характеристике являются геохимические следствия особенностей компонентов ландшафтов.

Глава 3. Методика полевых и камеральных исследований

Автором разработаны методологические принципы изучения эвапотранспирационной миграции химических элементов и по единой методике выполнены исследования в ландшафтах Северного, Среднего и Южного Урала (рис. 1).

Для оценки элементопереноса из атмосферы на земную поверхность в холодный период года были отобраны пробы снежного покрова в конце зимнего периода.

При исследованиях на территории заповедника «Денежкин Камень» был использован ГИС района. Основа ГИС создана с помощью программного обеспечения Arc/Info, версия 7.1.1 и ERDAS, а также Imagination. 8.3. Топографическая основа масштаба 1:25 000. Работали в версии Arc Map. 9.0. На основе имеющихся картографических слоев информации (измерения высоты снежного покрова, карта лесоустройства и космоснимки) созданы карты распределения снежного покрова по территории заповедника. Первичная информация, полученная по данным ГИС заповедника «Денежкин Камень», предоставлена научными сотрудниками заповедника А. Е. Квашниной и К. А. Возьмителем.

В теплый период года были отобраны суммарные выпадения: твердые и жидкие. Для сбора проб использовались емкости, частично заполненные дистиллированной водой (Мельчаков, 1999). Во всех случаях выполнялась консервация проб путем подкисления (из расчета 3 мл HNO3 на 1 л дистиллированной воды). Некоторые различия в методике определялись спецификой изученных ландшафтов.

В таежных ландшафтах исследовались поляны и подкроновые пространства под хвойными деревьями. Таким образом, были рассчитаны два параметра: атмосферные выпадения, трансформированные растительностью, и нетрансформированные растительностью. Согласно рекомендациям В. П. Учватова и Н. Ф. Гла­зовского (1982) осадкопылеуловители располагались в средней части подкронового пространства. Для обеспечения достоверности и определения вариабельности на каждой исследуемой площадке устанавливали 3—4 уловителя.

С целью изучения аэрального потока продуктов эвапотранспирации был поставлен эксперимент (Добровольский, Мельчаков, Учватов и др., 2003). При выборе камерного метода исследования автор опирался на установленный факт самостоятельной выработки растениями основных компонентов воздуха в изолированном пространстве (Буссенго, 1957). Ранее данный прием неоднократно применялся для анализа воздуха внутри камеры (Одум, 1975; Rasmussen, Went, 1965) и конденсатов на стенках камеры (Немерюк, 1970; Curtin et al., 1974).

Для оценки массопотоков от разных лесных ярусов были использованы два варианта методики.

Для исследования аэрального потока от древесного яруса на участке «Гора Пшеничная» (рис. 1) были выбраны типичные древесные растения: береза бородавчатая, лиственница Сукачева, сосна обыкновенная и ель сибирская. На участке «Массив Денежкин Камень» (рис. 1) – кедр сибирский, пихта сибирская, ель сибирская и береза бородавчатая. Исследовались ветки примерно одинакового размера, находящиеся на одной высоте над уровнем земли и имеющие разную ориентировку по сторонам горизонта. Кроме того, были учтены и другие требования к пробоотбору с целью биомониторинга (Методические…, 1987; Djingova, Kuleff, 1994; Ernst, 1990; Markert, 1993; Markert, Klausmeyer, 1990).

На ветви деревьев были надеты и плотно завязаны новые полиэтиленовые мешки – влагоуловители, предварительно промытые подкисленной дистиллированной водой (из расчета 3 мл HNO3 на 1 л воды). По мере накопления влаги на стенках мешка она собиралась одноразовым шприцем. Затем были получены смешанные пробы конденсатов, собранные с 7—10 деревьев с учетом видовых различий в продуцировании выделений.

Объемы выделений изменялись в зависимости от погодных условий: в одном мешке собиралось за сутки от долей до единиц миллилитра. Отбор конденсатов производили в течение 4—6 дней (в начале эксперимента – в течение 35 дней) без длительных перерывов. Интервалы в сборе могли внести некоторую ошибку, завышая или занижая полученные результаты: концентрация ксилемного сока подвержена суточной цикличности (Крамер, Козловский, 1983). Кратковременные съемы уловителей были необходимы для забора конденсатов (2—4 раза в сутки), вероятно, в это время изолируемые части деревьев восстанавливали свое нормальное функционирование.

Во избежание попадания в мешок дождевой воды ветви деревьев приподнимались до горизонтального положения и фиксировались шпагатом.

Для оценки массопотока от поверхности почвы и травянистых растений в атмосферу был использован другой вид влагоуловителя: специально сконструированная полиэтиленовая палатка на двух стойках размером 2 2,5 м без днища. Забор проб осуществлялся в центральной части хорошо освещенных полян с ровной поверхностью, на которых доминировали вейник наземный, земляника лесная, герань лесная, чина весенняя (участок «Гора Пшеничная») и черника обыкновенная, грушанка круглолистная (участок «Массив Денежкин Камень»). В качестве пробоотборника конденсатов использовалась половинка полуторалитровой полиэтиленовой бутылки, разрезанной вдоль. Из нее отбор влаги осуществлялся одноразовым шприцем. Для исключения загрязнения конденсатов все компоненты влагоуловителя тщательно промывались подкисленной дистиллированной водой. Для сбора конденсатов надевалась обработанная полиэтиленовая накидка. В самой нижней части палатки сбор проб не осуществлялся.

Интервал пробоотбора определялся погодными условиями и необходимостью исключить потери влаги, стекающей на землю.

Аналогично сбору конденсатов с ветвей деревьев были получены смешанные пробы: влагоуловители устанавливались в трех местах.

Для изучения водной миграции производили отбор проб поверхностных вод во все сезоны года, в ряде случаев — по несколько раз за сезон.

Расчеты величин выноса водорастворимых форм элементов с речным стоком производились с использованием собственных материалов по элементному составу изученных рек (рис. 1) и данных по модулям стока (карты атласов Свердловской, Челябинской и Оренбургской областей).

С целью изучения биогенной миграции отбирали пробы типичных растений на исследуемых участках. Для получения средней пробы были взяты 7—12 экземпляров растений. Количество средних проб для каждого участка составляло 3 — 7.

Все традиционные полевые работы в диссертации описаны менее подробно.

Лабораторные работы

На первом этапе исследований использовали традиционные методы анализа, на заключительном —ICP-MS метод, обеспечивающий одновременное определение большого количества элементов в широком диапазоне концентраций с низкими пределами обнаружения.

Обработка аналитических данных

В природных объектах определяли содержание до 72-х элементов: 9-ти главных (макроэлементов), и 63-х элементов с низкой концентрацией, или рассеянных в соответствии с подходом В.В. Добровольского (1983). Последние были разделены на рассеянные литофильные, халькофильные и сидерофильные элементы.

Результаты анализов обрабатывались методами математической статистики (Беус и др., 1976; Глотов и др., 1982; Лакин, 1990; Снытко, 1978 и др.). Рассчитывались средние арифметические, средние взвешенные, средние геометрические, выборочные дисперсии, средние квадратические отклонения, коэффициенты вариации, асимметрии, эксцесса и др. Часть массива данных обработана с помощью программы Microsoft Excel, версия Excel 97.

 Рис. 2.1. Картосхема фактического материала Рис. 1. Картосхема-1

 Рис. 2.1. Картосхема фактического материала Рис. 1. Картосхема-2

Рис. 2.1. Картосхема фактического материала

Рис. 1. Картосхема фактического материала

Условные обозначения к рис. 1

Границы:

Уральской горной страны

зональных областей

А таежная область Урала
В лесостепная область Урала
С степная область Урала

Ключевые участки:

1 «Массив Денежкин Камень» (Северный Урал)
2 «Гора Пшеничная» (Средний Урал)
3 «Холмогорье Уртазымское» (Южный Урал)

Участки отбора:

АВ атмосферных выпадений
ФМ конденсатов эвапотранспирационных испарений
ПВ поверхностных вод
П почв
Р растений

Глава 4. Аэральный поток в системе

«тропосфера растительность почва»

В результате проведенных исследований установлены количественные закономерности аэрального переноса в системе «тропосфера — растительность — почва» в основных зональных типах ландшафтов Урала.

Получена количественная оценка атмосферного массопотока большинства химических элементов в фоновых горных ландшафтах Северного Урала (рис. 2—3). Определено, что перенос элементов в теплый сезон, как правило, на порядок выше значений холодного периода. Указанный тренд закономерен: зимой активность живого вещества значительно замедляется, соответственно ослабевает воздействие полога леса на атмосферные выпадения (Мельчаков и др., 2003; Мельчаков, Учватов, Квашнина и др., 2004) и уменьшаются масштабы аэрального потока продуктов эвапотранспирации (см. главу 5).

Получены новые данные о трансформирующем влиянии древесных растений на состав атмосферных выпадений: в холодное время года, в отличие от теплого, рассматриваемый эффект проявляется слабо. Такое наблюдение дополняет результаты исследований, выполненных в Центральной России, где зимой полог древесных растений усиливает в n раз миграционный поток «тропосфера — почва» (Учватов, 1995). Анализируемый эффект в теплый период года усиливается, хотя и не является абсолютным.

В пределах Южного Урала вне зон активного техногенеза установлен четко выраженный барьерный геохимический эффект. 1. Величины атмосферных выпадений выше в несколько раз или на порядок в среднегорьях по сравнению с предгорьями. 2. Аналогичное превышение атмосферных выпадений отмечено в западных предгорьях по сравнению с восточными. Отмеченные тенденции четче проявляются в группе главных элементов. 3. Установлен геохимический эффект «барьерной тени»: атмосферные выпадения на участке среднегорий, находящемся в «барьерной тени», ниже, чем на равнинах. Основная причина барьерного геохимического эффекта заключается в активизации атмосферных процессов над Уралом. Эта природная особенность региона определяет более интенсивное взаимодействие аэрозолей с облачными образованиями и атмосферными осадками и рост количества осадков, вымывающих аэрозоли (Мельчаков и др., 2002б).

 Рис. 2. Массы главных элементов, мигрирующих в среднетаежных ландшафтах: 1 —-3

Рис. 2. Массы главных элементов,
мигрирующих в среднетаежных ландшафтах:

1 — водорастворимые формы атмосферных выпадений,

трансформированных растительностью;

2 — валовые формы опада;

3— эвапотранспирационный поток водорастворимых форм;

4 — вынос с речным стоком водорастворимых форм

 Рис. 3. Массы рассеянных элементов, мигрирующих в среднетаежных ландшафтах: 1 —-4

Рис. 3. Массы рассеянных элементов,
мигрирующих в среднетаежных ландшафтах:

1 — водорастворимые формы атмосферных выпадений,

трансформированных растительностью;

2 — валовые формы опада;

3— эвапотранспирационный поток водорастворимых форм;

4 — вынос с речным стоком водорастворимых форм

Определено, что величины выпадений большинства элементов выше (обычно в разы) в фоновых горных таежных ландшафтах Южного Урала по сравнению с аналогичными ландшафтами Северного Урала. Полученный результат закономерен, т.к. скорость биогеохимического круговорота в ландшафтах Южного Урала выше по сравнению с Северным Уралом и соответственно рассматриваемое звено цикла «работает» активнее. Такое заключение можно сделать на основе анализа влияния периода активных температур на скорости биогеохимических циклов в различных экосистемах (Башкин, Касимов, 2004) с учетом известной разницы в продолжительности периода активных температур в сравниваемых объектах: в южноуральском ландшафте данный период заметно длиннее. Техногенный фактор определил возрастание выпадений лишь 3-х элементов: Mg, S и Р.

Исследованы зональные и внутризональные особенности аэральной миграции элементов вне зон активного техногенеза. Установлены большие диапазоны атмосферных выпадений за зимний период в 8-ми провинциях 3-х областей Урала (в кг/км2): сумма солей — 46—1470, SO4 — 23—466, Fe — 1,4—11,3, Cu — <0,39—6,6, Zn — 0,5—13,5.

Определено, что в таежной области Среднего Урала величины выпадений в низкогорьях выше, чем в западных предгорьях (соответственно Zn, взятого в качестве примера: 5,1 — 1,3 кг/км2 за зимний период), а выпадения в восточных предгорьях превосходят параметры западных предгорий (соответственно Zn: 13,3 — 1,3 кг/км2). Констатировано возрастание аэротехногенной нагрузки на Среднем Урале с запада на восток.

Дополнительно в пределах провинций выделены районы с наибольшими и наименьшими величинами атмосферных выпадений. Например, в 3-х районах степной провинции Зауральского пенеплена величины выпадений Fe составляют 3,0; 3,6; 7,3 кг/км2 за зимний период (Мельчаков, 2001г).

Глава 5. Аэральный поток продуктов эвапотранспирации

в системе «почва растительность тропосфера».

Геохимия эвапотранспирации в таежной области.

Выполнено сравнение химического состава конденсатов эвапотранспирационных выделений горно-таежного и подгольцового поясов. Определено, что концентрации Na, Si, S, Ca и многих рассеянных элементов в конденсатах растений травяно-кустарничкового яруса горно-таежного пояса выше по сравнению с конденсатами подгольцового пояса (травяно-кустарничкового яруса и поверхности лишенной растительности) и конденсатами древесного яруса горно-таежного пояса.

Указанная разница двух поясов объясняется более высокой интенсивностью биогеохимических процессов в горно-таежном ландшафте. Кроме того, рассматриваемый горно-таежный ландшафт является в известной мере геохимически подчиненным.

Выполнена оценка масс элементов, вовлекаемых эвапотранспирацией в аэральный поток в фоновых таежных ландшафтах (табл. 1—2).

Таблица 1

Массы главных элементов, вовлекаемых эвапотранспирацией в

аэральную миграцию в ландшафтах Урала, г / км2 · год

Элемент Диапазон значений массопотока
и среднее арифметическое (в скобках)
таежные ландшафты степные ландшафты
Ca 100 000—2 500 000 (730 000) 21 000—33 000 (27 000)
S 350 000—550 000 (430 000) 170 000—430 000 (300 000)
Na 45 000—480 000 (200 000) 55 000—190 000 (120 000)
K 38 000—230 000 (130 000) 13 400—32 000 (23 000)
Fe 4 700—140 000 (54 000) 8 900—12 000 (10 400)
Mg 9 000—130 000 (45 000) 3 300—4 000 (3 700)
Si 24 000—56 000 (39 000) 8 800—23 000 (16 000)
Al 1 000—93 000 (29 000) 2 300—4 900 (3 600)
P 2 600—13 000 (5 800) 2 200—10 000 (6 100)


Pages:     | 1 || 3 | 4 |   ...   | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.