авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 || 4 | 5 |

Спутниковое радиозондирование ионосферы из окрестности главного максимума концентрации электронов

-- [ Страница 3 ] --

Во-вторых, одновременно на частотах от плазменной частоты ионосферы на высоте ИСЗ до максимальной частоты рабочего диапазона происходит распространение радиоволн вниз к Земле, отражение от нее и возвращение обратно на спутник. Эти радиоволны на ионограмме дают след отражения от Земли для «o»- и «x»-компонент.

В-третьих, на ионограммах появляется задержанный нижний след, который, как было объяснено в результате математического моделирования, является результатом наклонного распространения радиолуча, отражением его от Земли и последующим отражением (либо преломлением) от горизонтальных неоднородностей ионосферы.

Эти отличия ионограмм с низких высот и позволяют достоверно определять относительное положение ионозонда к положению максимума ионосферы, а также с меньшей погрешностью определять высоту этого максимума, что является достоинством метода зондирования с низких орбит.

В эксперименте были получены ионограммы при положении ИСЗ в максимуме ионосферы. В таком случае от ионосферы могут отражаться только радиоволны частоты , и след отражения от ионосферы становится вертикальным.

Результаты, полученные при радиозондировании с ОК «Мир» были, прежде всего, подвергнуты анализу на возможность существования метода внутреннего радиозондирования, с точки зрения того, будут ли основные параметры ионосферы, такие как критическая частота и высота максимума электронной концентрации определяться корректно при проведении эксперимента со столь низких высот.

 Последовательность ионограмм ОК «Мир» в момент пересечения высоты максимума-13

Рис.2. Последовательность ионограмм ОК «Мир» в момент пересечения высоты максимума электронной концентрации

Было проведено сопоставление с другими методами исследования ионосферы, проведенными в этот же период. Проводилось сравнение с данными станций наземного вертикального зондирования. Сравнение критических частот, в те моменты, когда ОК «Мир» пролетал близко над станцией наземного вертикального зондирования (Чилтон, Великобритания), показало их совпадение.

Проводилось сравнение с данными станции Chung-Li (Тайвань). Расчеты N(h)-профилей по серии последовательных ионограмм (рис. 2) в этом районе позволили проследить изменения параметров ионосферы. В этот период комплекс пересекал высоту максимума электронной концентрации. Рис.3, на котором представлены рассчитанные N(h)-профили (сдвиги горизонтальных осей частот пропорциональны времени между ионограммами), иллюстрирует картину изменения высоты вдоль орбиты спутника. На зависимости 2 нанесен профиль (*), рассчитанный в параллельных исследованиях по ионограмме наземного зондирования и по аналоговой ионограмме ОК «Мир». Таким образом, сравнение данных ОК «Мир» с результатами вертикального радиозондирования с Земли показало совпадение в определении критической частоты слоя F2 и расчете высоты максимума электронной концентрации.

Рис.3. Зависимости электронной концентрации от высоты, восстановленные по последовательным ионограммам

Для сравнения результатов рассматривались ионосферные разрезы, полученные по данным GPS-сигналов в цепочке трех ионосферных станций Италии при наблюдении ИСЗ системы NNSS.

Было найдено 6 периодов времени, когда измерения на обоих спутниках производились в районе Италии приблизительно одновременно. Временные и пространственные положения обоих ИСЗ были различны, но во всех случаях были зафиксированы совпадения полученных результатов в определения плазменной частоты на высоте спутника с учетом точности определения геофизических параметров.

Проведенные расчеты высоты максимума электронной концентрации по этим ионограммам так же совпали при сравнении с результатами томографического исследования ионосферы

Тем самым была показана возможность определения основных параметров ионосферы, а, следовательно, и возможность существования метода внутреннего радиозондирования.

Проведенные сравнения с известными автору параллельными исследованиями, стали основанием не только для вывода о том, что по следам отражения от ионосферы и от Земли можно определить расположение спутника относительно высоты , но и, при наличии на ионограмме следа отражения от Земли, показали возможность их использования для определения формы f(h)-профиля в окрестности максимума на всем частотном интервале существования следа до частоты (- 0,1) МГц в отличие от предлагаемого ранее в «Руководстве по обработке ионограмм» использования модельного распределения в интервале (0,9;).

Существенное внимание в работе было уделено проблеме экстраполяции результатов радиозондирования в окрестности орбиты ИСЗ и тем самым рассмотрению возможности включения низколетящего ИСЗ с ионозондом на борту в систему контроля над ионосферой.

Для решения этой задачи в работе использовался метод кригинга. Данный метод применяется для интерполяции экспериментальных значений какого-либо параметра, в частности, критической частоты в расчетную точку с заданными координатами. Суть метода состоит во взвешенном усреднении всех экспериментальных значений исследуемого параметра и определении величины этого параметра в любой точке некоторой окрестности, включающей район получения экспериментальной информации, при этом в качестве весового параметра выступает расстояние от эмпирической точки до расчетной. Фоновым значением исследуемого параметра бралось модельное значение, полученное по модели IRI.

Результат экстраполяции представляет собой вычисляемую критическую частоту Z0 в расчетной точке:

,

где foF2IRI - значение, вычисленное по модели IRI в расчетной точке, а коэффициенты i являются решениями системы линейных уравнений:

.

В данной системе уравнений Vj0 – представляет собой расстояние от j-й точки до точки, в которой производится коррекция, а Vij – расстояние между i-й и j-й точками, для расчета которого используется (1).

, (1)

где SF – широтный фактор, который имеет значения 2.0 для средних, 0.8 для низких и 2.1 для высоких широт.

Дополнительный множитель Koefi0 определяется:

,

где и – расстояние по широте и долготе, соответственно, между i-й экспериментальной точкой и точкой, в которой производится коррекция. Данный множитель вводится для усилении влияния точек, наиболее близко расположенных к области экстраполяции ослаблении вклада отдаленных от данной области. Расстояния и– интервалы коррекции – представляют собой характерные расстояния по широте и долготе, на которых критическая частота меняется в e раз. В условиях спокойной ионосферы они составляют = 500 и = 1000 км соответственно. В условиях ионосферы с ярко выраженными градиентами электронной концентрации встает вопрос о правильном выборе этих интервалов коррекции. Для выработки численных критериев ответа можно использовать следующие соображения. На экспериментальной серии выделяется тот участок, где наблюдалось отклонение от регулярных условий. Затем оценивается, какую величину составило максимальное изменение рассматриваемого параметра – критической частоты . Исходя из предположения о том, что в условиях спокойной ионосферы данное изменение на характерных расстояниях составляет , получаем корректирующий множитель. На следующем этапе рассматриваются протяженности данного участка. Данные расстояния рассчитываются: и .

Практической реализацией данного метода являются получаемые региональные карты критической частоты. Такие карты критических частот можно строить по различной экспериментальной информации. В данной работе особый интерес вызвало использование разной геофизической информации как результатов радиозондирования с наземных ионосферных станций, так и спутниковое радиозондирование в этом же районе. Совместное использование данных наземного и спутникового радиозондирования ионосферы является более эффективным, по сравнению с использованием каждого из методов по отдельности, с точки зрения экстраполяции экспериментальных данных на основе ионосферных моделей. В частности, на контурных картах плазменной частоты в максимуме области F2 появляются новые детали, обнаружить которые, пользуясь только результатами наземного радиозондирования, было бы невозможно, пренебрежение которыми может существенно ухудшить условия радиосвязи, прогнозируемые по этим картам.

Для рассмотрения метода коррекции модельных карт по данным наземного и спутникового радиозондирования были выбраны некоторые серии ионограмм, полученные 31 марта. Для численных расчетов был отобран участок траектории в Южном полушарии в районе Австралии, поскольку в этой области находилось наибольшее число наземных ионосферных станций, рядом с которыми пролетала ОК «Мир».

На основании входных данных карта критических частот строилась в трех видах: скорректированная по наземным станциям, по ионограммам с ОК «Мир» и по совместным данным наземного и спутникового зондирования. Результаты представлены на рис. 4.

В среднем относительное отклонение эксперимента от модели составило 15%, варьируясь в пределах от 3.5% до 40.6%. Наибольшее расхождение между моделью и экспериментом наблюдается на двух станциях – Vanimo и Darwin.

Изменения на карте 2, скорректированной по наземным станциям модели IRI, коснулись, в основном, формы линий одинаковой критической частоты. Результаты коррекции по данным спутникового зондирования приведены на карте 3 рис. 4, где также отмечены места расположения ОК «Мир» во время съемок ионограмм. Относительное отличие модельных критических частот от реальных в среднем составило 10%, варьируясь в пределах от 1.9% до 29.1%. Построенная методом кригинга карта 3 показывает, что на участке траектории наблюдается некоторое «возмущение» критической частоты в области 5° S 135° E. легко заметить образование замкнутой структуры с центром в указанной точке. Стоит отметить также и тот факт, что, несмотря на ориентированность начальных данных вдоль траектории спутника, новая структура на скорректированной карте выглядит ориентированной перпендикулярно направлению движения ОК «Мир», а не вдоль неё, как этого можно было бы ожидать. Иначе говоря, даже при использовании данных, расположенных практически вдоль прямой линии, результат экстраполяции оперативных данных представляет собой не одномерную структуру. Результат построения карты, скорректированной совместными данными от наземных станций и ОК «Мир», приведен на рис. 4 (карта 4). Общая картина говорит о наличии в области 10° S 132° E ионосферной неоднородности замкнутого типа. Данная неоднородность имеет положительный знак, поскольку значение критической частоты внутри нее превышает уровень, соответствующий частоте модели IRI.

Рис. 4. Карты критический частоты (1 – карта, построенная по данным модели IRI, 2 – карта, скорректированная по данным наземных станций, 3 – карта, скорректированная по данным с ОК «Мир», 4 – карта, скорректированная по совместным данным).

Сравнение результатов экстраполяции плазменных частот предлагаемым методом с экспериментальными данными показало, что в конкретном примере величина относительного отклонения критической частоты модели от реальности изменилась в среднем от величины 11.2% до проведения коррекции до величины 6.7% после проведения коррекции. При этом коэффициент корреляции между экспериментальными данными и модельными значениями изменился от 0.53 (до проведения коррекции) до 0.79 (после коррекции и по спутниковым и по наземным данным), что соответствует изменению тесноты связи с «заметной» до «высокой» по шкале Чеддока.

Из проблем рассматриваемого нового метода радиозондирования с пилотируемого комплекса надо выделить появление ионограмм с наклонным отражением от ионосферы. На подобных ионограммах во многом отсутствовал след отражения от Земли, что не давало возможности произвести вычисление N(h)-профилей. Причиной этого является неоптимальное расположение антенн ОК МИР относительно Земли во время получения этих ионограмм и в подобного рода экспериментах со стабилизированном положением антенн ионозонда данная проблема должна отсутствовать.

Итак, проведенные исследования устанавливают эффективность метода радиозондирования с высот порядка 350 км в определении основных параметров ионосферы.

2. Предложено объяснение новых ионограмм с дополнительными следами с высот ниже главного максимума ионосферы

Новым результатом, полученным в эксперименте на ОК «Мир» стала регистрация ионограмм с дополнительным следом с большими действующими дальностями (задержанным нижним следом). В работе предлагается объяснение причин появления этого следа и численные расчеты, подтверждающие это объяснение.

Морфологической особенностью ЗНС является его монотонная непрерывность вдоль оси частот. При этом в большинстве случаев наблюдается практически линейная зависимость действующей дальности от частоты. Отсутствуют какие-либо перегибы на кривых ЗНС. Второй особенностью ионограмм с ЗНС является длительность их непрерывного существования на последовательности ионограмм. При этом конкретные параметры ионосферы, определяемые по этим ионограммам, могут изменяться весьма значительно.

Для автора является несомненной гипотеза о том, что причиной возникновения ЗНС служит отражение или преломление зондирующих лучей в сферически неоднородной ионосфере. Указанные выше особенности, являются определяющими для факта, что эта неоднородность есть достаточно большое, несколько сотен километров, единое образование (возможно замкнутой формы) с постоянно увеличивающейся электронной концентрацией, которую можно смоделировать как множество вложенных друг в друга слоев

Для численного подтверждения этого факта рассматривались две математических модели неоднородного распределения плотности электронов в изотропной ионосфере, в которой траектория является плоской кривой.

Первая модель – вспомогательная - основывалась на том, что пространство, где показатель преломления отличен от единицы, делится на слои так, что все параметры плазмы внутри слоя считаются одинаковыми, а между собой отличаются так мало, что отраженной волной на границе раздела можно пренебречь. Уравнение каждого слоя задается аналитически в виде зависимости y(x). В качестве функций y(x) выбирались различного вида соотношения, моделирующие горизонтальные градиенты электронной плотности, в частности, внутренние слои - вложенные друг в друга эллипсы, и наружные слои - кривые Гаусса. Каждой точке пространства (x0, y0) можно сопоставить координаты единичного вектора нормали к нижней границе слоя, в котором находится эта точка, а также коэффициент преломления.

Вторая модель – основная – заключалась в задании функции распределения плотности концентрации электронов N(x, z) в виде

, (2)

где N0(z) – распределение концентрации в зависимости от высоты при отсутствии возмущения (N(h)- профиль);

a, b, Lx, Ly, – параметры, влияющие на размер, интенсивность и положение неоднородности.

Были выбраны два метода расчета траекторий луча в ионосфере. Первый метод является пошаговым методом построения траектории и основан на выполнении закона Снелиуса на каждом шаге. Путем перебора углов вылета радиолуча выбираются те из наклонных траекторий, которые путем отражения от Земли и последующей рефракции и отражения в ионосфере возвращаются обратно.

Моделирование траектории радиоволны происходит следующим образом:

  • задается первоначальное направление движения от передатчика (для последующих шагов рассчитывается) по направлению вектора ;
  • задается шаг расстояния , пройденного лучом в одном направлении;
  1. определяются координаты радиус-вектора новой точки траектории по формуле

,

где - координаты предыдущей точки траектории (или для первого шага координаты передатчика);

  1. определяется номер слоя, в котором находится получившаяся точка, и соответствующие коэффициент преломления и вектор нормали к поверхности ;
  2. в соответствии с законом преломления вычисляются координаты новой волновой нормали .

Алгоритм расчета траектории радиоволны от ИСЗ в ионосфере любой структуры реализован для обеих математических моделей и использовался для оценочных расчетов.

а) б)

Рис. 5 а) возвратные на спутник траектории в неоднородной ионосфере, б) вверху – ионограмма с ОК «Мир», полученная от 5 мая 1999 г., внизу – синтезированная по результатам расчета действующих дальностей ионограмма.

Вторым методом расчета траектории радиоволны стал метод непосредственного численного решения уравнения эйконала. Уравнение эйконала, как уравнение в частных производных первого порядка, приводят к системе обыкновенных дифференциальных уравнений, называемой системой характеристических уравнений. Полученная система решается численно. Этот метод расчета применялся для расчета траектории в рамках математической модели с заданной функцией распределения концентрации электронов. Сравнение результатов расчета возвратных траекторий двумя методами при одинаковых начальных условиях дает удовлетворительное совпадение с отличием рассчитанных действующих дальностей в среднем не более чем на 5%. Использование второго метода предпочтительней, так как позволяет решить все проблемы, связанные с зависимостью результатов от длины шага. Пример расчета траекторий в неоднородной ионосфере приведен на рис. 5а. На рис. 5б представлены реальная и синтезированная ионограммы. На синтезированной ионограмме верхних след соответствует действующим расстояниям вертикальных возвратных траекторий до Земли, а нижний след – наклонным возвратным траекториям. Знаком обозначены действующие дальности тех траекторий, которые изображены на рис. 5а.



Pages:     | 1 | 2 || 4 | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.