авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 |

Оценка трещиноватости низкопористых карбонатных нефтенасыщенных пород по результатам геофизических исследований скважин

-- [ Страница 1 ] --

На правах рукописи

КНЯЗЕВ Александр Рафаилович

ОЦЕНКА ТРЕЩИНОВАТОСТИ

НИЗКОПОРИСТЫХ КАРБОНАТНЫХ нефтенасыщенных ПОРОД

ПО РЕЗУЛЬТАТАМ ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН

Специальность 25.00.10 - Геофизика, геофизические методы поисков полезных ископаемых

АВТОРЕФЕРАТ

диссертации на соискание учёной степени

кандидата геолого-минералогических наук

Пермь 2009

Работа выполнена на кафедре геофизики ГОУ ВПО «Пермский государственный университет»

Научный руководитель: Костицын Владимир Ильич,

доктор технических наук, профессор

Официальные оппоненты: Шихов Степан Александрович, доктор

геолого-минералогических наук, профессор

Губина Августа Ивановна,

доктор геолого-минералогических наук

Ведущая организация: ОАО «НПФ «Геофизика», г. Уфа

Защита состоится 25 декабря 2009 года в 15 час. 15 мин. на заседании диссертационного совета Д 212.189.01 в Пермском государственном университете по адресу: 614990, г. Пермь, ул. Букирева, 15, зал заседаний Учёного совета.

Факс: (342) 237-16-11. E-mail: geophysic@psu.ru

С диссертацией можно ознакомиться в научной библиотеке Пермского государственного университета

Автореферат разослан "__" ноября 2009 г.

Учёный секретарь

диссертационного совета Д 212.189.01,

доктор технических наук, профессор В.А. Гершанок

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Карбонатные породы содержат более половины мировых запасов нефти, при этом только часть запасов сосредоточена в коллекторах порового типа. Значительное количество углеводородов находится в низкопористых карбонатных породах (НКП), которые могут быть коллекторами промышленного значения только при наличии в них открытых трещин.

В этой связи актуальной является задача поисков трещинных зон и оценки степени трещиноватости в карбонатных толщах. Наличие открытых трещин определяют с помощью различных методов, чувствительных к изменениям физических свойств пород, вызванным трещиноватостью. При сейсмических исследованиях, в том числе скважинных, трещиноватость оценивают по анизотропии скоростей продольных волн, по расщеплению поперечных волн на быстрые и медленные, по рассеиванию сейсмических волн. Эти исследования не обладают достаточной детальностью при решении промысловых задач.

На оценку трещиноватости направлены также специальные исследования керна, гидродинамические исследования, в частности, гидропрослушивание, анализ процесса бурения, особенно выявление интервалов поглощения промывочной жидкости при бурении и т.д.

Среди всех исследований важнейшим источником информации о параметрах пород является комплекс геофизических исследований скважин (ГИС). В настоящее время существуют специальные методы ГИС, направленные на выявление трещин, пересекающих скважины. Наиболее эффективными являются метод электрического сканирования стенки скважины и способы, связанные с закачкой в прискважинную зону индикаторов (радиоактивных, нейтронопоглощающих). Но в большинстве скважин комплекс ГИС включает стандартный набор методов. Известно, что наиболее чувствительными к трещиноватости являются волновой акустический каротаж (ВАК) и электрометрия скважин, в частности, боковой каротаж (БК). Однако имеющиеся способы оценки трещиноватости по этим методам каротажа имеют существенные недостатки, поэтому разработки автора в данном направлении являются весьма актуальными.

Цель диссертационной работы. Разработать методику интерпретации стандартного комплекса ГИС и способы волнового акустического каротажа для оценки трещиноватости низкопористых карбонатных пород.

Основные задачи исследований:

1. Анализ состояния проблемы оценки трещиноватости по данным геофизических исследований скважин, в частности, по результатам волнового акустического каротажа;

2. Разработка способов наблюдений и интерпретации волнового акустического каротажа, эффективных при оценке трещиноватости пород;

3. Создание способа учёта слоистости и кавернозности пород при оценке пористости по данным волнового акустического каротажа;

4. Разработка общих принципов оценки трещиноватости низкопористых карбонатных пород по данным электрометрии;

5. Разработка методики оценки трещиноватости по данным электрометрии и комплексу ГИС на примере различных карбонатных толщ;

6. Оценка пористости карбонатных пород с применением адаптации данных ГИС, учитывающая доломитизацию, окремнение, кавернозность и слоистость.

Объекты исследований – низкопористые карбонатные породы Волго-Уральской и Тимано-Печорской нефтегазоносных провинций, существенно отличающиеся по физическим свойствам.

Предмет исследований – данные геофизических исследований скважин, прежде всего, волнового акустического каротажа и бокового каротажа при изучении низкопористых карбонатных пород.

Фактический материал и личный вклад автора. Диссертация является логическим завершением десятилетних научно-исследовательских работ автора в ОАО «Пермнефтегеофизика» и обучения в аспирантуре Пермского государственного университета. Часть научно-исследовательских работ выполнялась в рамках договоров с ООО «ПермНИПИнефть», в которых автор принимал непосредственное участие в качестве ответственного исполнителя со стороны ОАО «Пермнефтегеофизика» по темам: «Комплексное изучение карбонатных коллекторов смешанного типа» (2002 г.), «Разработка методики комплексной интерпретации сейсмических, геолого-геофизических и акустических измерений для выявления высокопроницаемых трещинных зон в рифовых массивах и дифференцированной оценки сложнопостроенных коллекторов (на примере им. Архангельского и Шершнёвского месторождений)» (2004 г.), «Разработка методики комплексирования геолого-геофизических методов с целью подсчёта запасов углеводородов в сложнопостроенных карбонатных резервуарах (на примере Тобойского, Медынского и Мядсейского месторождений)» (2008 г.).

Основные защищаемые положения:

1. Анализ эффективности волнового акустического каротажа при оценке трещиноватости пород, основанный на сопоставлении с результатами прямых наблюдений трещиноватости и учитывающий субвертикальность раскрытых трещин.

2. Способы акустического каротажа скважин, основанные на использовании отражённых волн Стоунли, поляризованных в трёх плоскостях поперечных волн и вариаций мощности излучения.

3. Методика оценки трещиноватости низкопористых нефтенасыщенных карбонатных пород по данным электрометрии скважин, основанная на использовании свойств остаточной воды и применении закона Арчи.

Научная новизна:

1. Показана эффективность широкополосного волнового акустического каротажа, особенно при площадном анализе трещиноватости. Установлено, что акустические признаки трещиноватости не являются необходимыми и достаточными из-за субвертикальности открытых трещин и несовершенной конструкции применяемых приборов.

2. Разработаны три способа волнового акустического каротажа, повышающие эффективность оценки трещиноватости пород.

3. Предложен метод учёта кавернозности и слоистости породы при интерпретации результатов акустического каротажа.

4. Обосновано использование электрометрии скважин, в частности, метода БК в низкопористых карбонатных нефтенасыщенных породах как метода оценки трещиноватости.

5. Разработаны общие принципы и методика оценки трещиноватости по данным электрометрии скважин для карбонатных пород разного генезиса, вещественного состава, структуры матрицы и пустотного пространства.

6. Разработан принцип адаптивной интерпретации данных ГИС, учитывающий результаты петрофизических и других геолого-геофизических исследований при оценке коллекторских свойств карбонатных пород.

Практическая значимость работы. Оценка трещиноватости по разработанной методике применялась на месторождениях им. Архангельского и Шершнёвском. Полученные данные хорошо согласуются с результатами сейсморазведки 3Д и непродольного вертикального сейсмического профилирования. На основании полученных данных в ООО «ПермНИПИнефть» построена постоянно-действующая геолого-технологическая модель Т-Фм залежи Шершнёвского нефтяного месторождения с учётом трещиноватости коллекторов, а также гидродинамическая модель, в которой трещиноватость учитывалась с одним и с двумя типами пустотного пространства. Оценка трещиноватости пород в разведочных скважинах позволила скорректировать заложение горизонтальных скважин таким образом, что они вскрыли трещинные зоны и из всех пробуренных горизонтальных скважин получены значительные притоки нефти.

В ОАО «Пермнефтегеофизика» внедряется разработанная автором методика интерпретации данных геофизических исследований скважин и аппаратура МАК-4-ОПВ, реализующая способ акустического каротажа по отражённым волнам Стоунли.

Апробация работы. Основные положения диссертации докладывались на научных конференциях (Уфа, 2002, 2004, Сургут, 2007, Пермь, 2008), опубликованы в 14 научных работах, в том числе 7 в изданиях, рекомендованных ВАК. По теме диссертации получено 2 патента на изобретения.

Структура и объём работы. Диссертация состоит из введения, четырёх разделов и заключения. Работа содержит 124 страницы, включая 33 рисунка и библиографический список из 74 наименований.

Автор благодарен д.т.н. Костицыну В.И., под чьим научным руководством выполнена диссертационная работа, д.г.-м.н. Некрасову А.С. за постановку задач и плодотворные обсуждения, всем сотрудникам ОАО «Пермнефтегеофизика», обеспечившим условия для плодотворной работы, в частности, д.т.н. Жуланову И.Н., к.т.н. Савичу А.Н. Автор также благодарен Заляеву Н.З., принцип функциональных преобразований которого всегда помогал автору при интерпретации данных геофизических исследований скважин.

Содержание работы

Общие сведения о трещиноватости горных пород, методах её оценки и особенностях карбонатных отложений.

С точки зрения коллекторских свойств горных пород интерес представляют только открытые трещины, т.е. трещины самых поздних генераций. Они отображают современное поле тектонических напряжений. Известно, что открытыми являются почти всегда только субвертикальные трещины.

Автор предложил при интерпретации ГИС использовать упрощённую классификацию трещин по размеру. При измерениях скважинными геофизическими приборами масштабными факторами являются диаметр скважины и разрешающая способность методов измерений. Поэтому макротрещиной следует называть трещину, которая может быть визуально обнаружена при отборе полноразмерного керна и фиксируется геофизическими методами, сканирующими стенку скважины. Раскрытость макротрещин 50-100 мкм и более, протяжённость – десятки сантиметров и более. Микротрещинами следует называть более мелкие трещины. Их раскрытость - единицы и первые десятки микрометров, длина – до нескольких сантиметров.

Трещиноватость горных пород оценивают различными способами. Из лабораторных методов наибольшую информацию о микротрещинах получают путём насыщения больших (~5 см) правильной формы образцов люминесцирующими жидкостями, а также изучают шлифы, полученные из образцов керна, предварительно пропитанных эпоксидной смолой. Лабораторное изучение макротрещин возможно при специальной технологии бурения с выносом 100% керна большого диаметра (до 100 мм). Геолого-технологические исследования в процессе бурения скважин позволяют выявить интервалы макротрещин по поглощениям бурового раствора или нефте-водопроявлениям. Методы гидродинамических исследований скважин позволяют определить трещинный тип коллектора при интерпретации данных индикаторных диаграмм или кривых восстановления давления при испытаниях пластов.

Среди методов ГИС самыми эффективными для обнаружения макротрещин являются акустические сканеры САТ (скважинный акустический телевизор) и электрические сканеры FMI (Formation Micro Imager, российского аналога нет). Стандартными методами ГИС трещины могут быть обнаружены по изменениям упруго-механических характеристик, проницаемости и удельного электрического сопротивления (УЭС) породы. Наиболее чувствительны к изменениям указанных свойств акустический каротаж и электрометрия.

Экспериментально и теоретически установлено, что нижний предел пористости (Кп) коллекторов порового типа для карбонатных пород равен 6-8%. Карбонатные породы, у которых Кп < 7%, будем называть низкопористыми. Их проницаемость может быть обеспечена только трещинами, но не порами и кавернами. Нижний предел пористости коллекторов трещиноватых пород равен нулю. Благодаря полигенетической природе карбонатные породы отличаются большим разнообразием, поэтому для их описания в разных геологических ситуациях требуется разный набор параметров. Трещиноватость в карбонатных породах способствует развитию кавернозности. Необходимо учитывать, что влияние кавернозности на показания приборов ГИС отличается от влияния трещиноватости, и нередко противоположно.

Защищаемые в диссертации положения относятся к низкопористым карбонатным породам, проницаемость которых обеспечивают субвертикальные микро- и макротрещины.

Первое защищаемое положение

Анализ эффективности волнового акустического каротажа при оценке трещиноватости пород, основанный на сопоставлении с результатами прямых наблюдений трещиноватости и учитывающий субвертикальность раскрытых трещин. [1, 2, 3, 4, 7, 10, 11, 12].

Критерии оценки трещиноватости по данным акустического каротажа разрабатавались Дзебанем И.П., Карусом Е.В., Кузнецовым О.Л., Ивакиным Б.Н. и многими другими. Автором выполнен анализ эффективности оценки трещиноватости пород по ВАК, главным образом, на примере карбонатных отложений фаменского яруса Соликамской депрессии, органогенных построек, сложенных водорослевыми известняками [2, 10]. Отложения являются массивными, выраженные геофизические реперы отсутствуют, однако выделяются циклы осадконакопления, обусловленные эвстатическими колебаниями уровня мирового океана (А.И. Губина, 2007). Породы представлены плотными известняками в начале циклов осадконакопления и пористыми, местами доломитизированными и сульфатизированными известняками к концу циклов, под поверхностями перерывов осадконакопления.

Трещиноватыми являются плотные и низкопористые известняки. Наличие трещин может изменить скорость, амплитуду, затухание, частоту и другие параметры акустических волн, регистрируемых при каротаже. Под руководством автора разработана компьютерная программа АК-КОМП, которая использована для анализа данных ВАК. С помощью программы определяются интервальное время продольной (P), поперечной (S) и поверхностной (или Стоунли, St) волн, частота и ширина спектра, энергия, коэффициент затухания для каждого типа волн и для волнового сигнала (ВС) в целом, и другие параметры. Одним из достоинств программы является способ графического отображения ВС в виде волновой картины (ВК), наглядно показывающей, как изменяются P-, S- и St- волны по разрезу. Например, на ВК, представленной на рис. 1, в интервале 2407 – 2412 м наблюдается снижение амплитуд всех типов волн, сбой фаз и изменение частоты. Заметно также снижение скорости волны Стоунли. Средняя пористость в интервале составляет 2-5%, трещиноватость подтверждена данными САТ. Одним из количественных признаков трещиноватости является полная энергия волнового сигнала Е1. В данном интервале кривая Е1 имеет глубокий минимум. Минимальными значениями отмечены также кривые энергии и амплитуды продольной, поперечной и поверхностной волн и частота волны Стоунли. Максимальные значения имеют интервальное время волны Стоунли и коэффициенты затухания всех типов волн. Таким образом, в

 Пример волнового сигнала в низкопористых карбонатных отложениях приведённом-0

Рис. 1. Пример волнового сигнала в низкопористых карбонатных отложениях

приведённом примере имеет место целая совокупность акустических признаков трещиноватости. В пермском регионе применяют методику приточных зон (Л.В. Будыко, 1979), согласно которой по кривой полной энергии ВС вычисляют коэффициент приточности Ке и выделяют приточные зоны по признаку Ке > 0,22 Нп/м. Результативность методики проявляется при площадном анализе. Например, на Сибирском месторождении выявлена приуроченность зон трещиноватости к склонам поднятий [2, 3]. Однако коэффициент приточности не является надёжным признаком трещиноватости, т.к. при вычислении Ке требуется опорный пласт, выбираемый субъективно, снижение Ке может быть обусловлено асимметрией ствола скважины, кавернозностью, брекчиевидностью или слоистостью пород, наличием прослоев глин и т.д.

С целью анализа эффективности различных критериев выделения трещин в низкопористой карбонатной породе по данным акустического каротажа автором выполнены сопоставления данных ВАК с фотографиями полноразмерного керна и шлифов, данными САТ и результатами испытаний скважин [4]. Фотографии типичных образцов керна с макротрещинами и шлифа с микротрещинами приведены на рис. 2. Образцы керна «А» имеют пористость по нейтронному каротажу Кпн 3-4%. У керна «Б» Кпн 5-7%, при этом пустотное пространство представлено кавернами, а на уплотнённых участках видны следы трещин. В керне «В» имеем массивный плотный известняк (Кпн 2%), пересечённый несколькими субвертикальными трещинами. При испытании скважины приток нефти получен из интервала, в который входит образец керна «Б» и из интервала, полностью состоящего из породы типа образца «В». Фотография шлифа даёт представление о пустотном пространстве низкопористой породы на «микроуровне»: имеются проницаемые пористые зоны (зоны микрокавернозности), каверны и соединяющие их микротрещины. Шлиф сделан из

Рис. 2. Фото керна и шлифа по скв. 79, пл. Шершнёвская



Pages:   || 2 | 3 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.