авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 7 |

Методы ограничения водопритока при строительстве и эксплуатации скважин

-- [ Страница 2 ] --

- на II Международной научно-практической конференции «Современные технологии капитального ремонта скважин и повышения нефтеотдачи пластов. Перспективы развития», Геленджик, Краснодарский край, 2007 г.

- на секциях Ученых советов и научно-технических совещаниях ТатНИПИнефть, ВНИИнефть, СвердНИИхиммаш, АО НК «Мунайнефтегаз» Казахстан, ГУП «Ингушнефтегазпром», ОАО «Калмнефть» Республика Калмыкия, ВНИИгалургии, НПО «Бурение» Краснодар, фирмы «Chema Balke-Durr» Германия.

Публикации

По результатам представленных в работе исследований опубликовано 76 научных работ, в т.ч 2 монографии, региональное справочное руководство, 40 статей и тезисов докладов, получено 12 авторских свидетельств и 21 патент на изобретения, из них в источниках, рекомендуемых ВАК Министерства образования и науки РФ, 12 печатных работ. Выпущено 24 руководящих документа отраслевого и регионального значений.

Структура и объем работы

Диссертация состоит из введения, 6 глав, заключения, списка литературы и приложений. Работа содержит 354 страниц машинописного текста, 84 рисунка, 105 таблиц, 287 библиографических ссылок и приложения на 27 страницах.

Содержание работы

Во введении определены основная цель и направление исследований, обоснованы актуальность и важность проблемы по снижению обводненности добываемой продукции и интенсификации добычи нефти путем проведения ремонтно-изоляционных работ с использованием полимерных материалов.

Отмечено, что данная проблема в нефтяной отрасли является одной из приоритетных в поддержании стабильности действующего фонда скважины, что в конечном итоге предопределяет плановую добычу нефти.

Большой вклад в решение теоретических и практических вопросов ограничения водопритока в скважинах, фильтрации и структурирования полимерных систем в пористой среде при формировании гидроизоляционного экрана внесли ученые и исследователи Ахмедов К.С., Алмаев Р.Х., Алтунина Л.К., Блажевич В.А., Барабанов В.П., Газизов А.Ш., Гарифов К.М., Габдуллин Р.Г., Гончарова Л.В., Горбунов А.Т., Земцов Ю.В., Ибатуллин Р.Р., Курочкин Б.М., Кравченко А.В., Каргин В.С., Крупин С.В., Кузнецов Е.В., Кувшинов В.А., Клещенко И.И., Липатов Ю.С., Муслимов Р.Х., Маляренко И.И., Нерпин С.В., Орлов Г.А., Поддубный Ю.А., Поляков В.Н., Перунов В.П., Рябоконь С.А., Романов Г.В., Сидоров И.А., Ситников Н.Н., Старшов М.И., Стрижнев В.А., Скородиевская Л.А., Телков А.П., Усачев П.М., Уметбаев В.Г., Умрихина Е.В., Френкель С.Я., Хисамутдинов Н.И., Шумилов В.А., Юсупов И.Г., Ягофаров А.К. и другие. Из зарубежных ученых вопросами водоизоляции активно занимались E.J.Burcik, J.R. WiIIiams, B.J. Knigh, E.J. Junch, M. Masket, Y.A. Pope, F.W. Smith, Y.J. Hirasakia, E. Doark, C.A. Einarsei, R.J. Engight, W.Y. Martin, N.N. Nimerk, Presli, C.N. Rankin, E.A. Richardson, D.D. Sparline, H.D. Woodard.

В первой главе показано, что современный этап разработки Ромашкинского месторождения характеризуется снижением эффективности отбора нефти, ухудшением структуры запасов и ростом обводненности скважин до критических значений. Доля трудноизвлекаемых запасов, составлявшая от начальных извлекаемых запасов (НИЗ) 38,7%, по текущим извлекаемым запасам (ТИЗ) достигла 78,6%. Из высокопродуктивных коллекторов отобрано более 93% НИЗ. В то же время темпы отбора НИЗ по слабопроницаемым коллекторам составляют 1-1,5%.

Вся терригенная часть горизонта Д1 представляет собой единый гидрогеологический резервуар, в результате чего большинство площадей Ромашкинского месторождения характеризуется наличием обширных водонефтяных зон (ВНЗ).

Кроме того, динамичные и труднопрогнозируемые процессы гидродинамического воздействия ведут к существенным изменениям пластового давления по разрезу и площади месторождения, что осложняет гидродинамические условия при проектировании технологических процессов заканчивания скважин, ухудшению показателей освоения объектов эксплуатации, снижению производительности скважин (дебита и приемистости) и коэффициента продуктивности.

Поэтому, как показывает многолетний промысловый опыт заканчивания и последующей эксплуатации нефтяных и газовых скважин, достижение высоких показателей технического состояния крепи в изменяющихся на различных стадиях разработки месторождений геолого-физических и гидродинамических условиях до настоящего времени представляется одной из наиболее сложных промысловых задач. Именно поэтому в процессе эксплуатации выполняются большие объемы ВИР, доля которых в общем балансе КРС составляет 7-9%, а по мере роста обводненности продукции более 50% повышается до 12-14%.

Сложные гидродинамические и технические условия проведения водоизоляционных работ обусловили разработку и развитие физико-химических методов ограничения водопритоков в нефтяные скважины. Наиболее широкое промысловое применение при этом находят водоизолирующие композиции на основе акриловых полимеров, жидкого стекла, а также тампонажные смеси на базе тампонажных цементов, этилсиликатов, гидрофобной кремнийорганической жидкости, гипса, шлака и их модификаций, полимерцементов и т.д.

Обводнение добываемой продукции может произойти вследствие нарушения целостности цементного кольца и негерметичности обсадных колонн в интервале залегания водоносных коллекторов. Поступление пластовых флюидов в скважину происходит через интервалы перфорации за счет заколонной циркуляции из выше- или нижележащих водоносных пластов. Разрушение цементного кольца в удалении от эксплуатационного фильтра не приводит к поступлению пластовых флюидов в скважину. Но при этом появляются перетоки между коллекторами, вскрытыми при строительстве скважины, приводящие к усилению коррозии обсадных колонн, и являющиеся недопустимыми с экологической точки зрения.

Для нефтяных месторождений, находящихся на поздней стадии разработки, характерно обводнение добываемой продукции за счет прорыва или подтягивания воды к продуктивной части коллектора. Прорыв воды возможен по пропласткам неоднородного пласта. Причиной этого типа обводнения является наличие в разрезе нефтяного коллектора высокопроницаемых интервалов, по которым происходит первоочередное продвижение фронта контурных или закачиваемых с целью поддержания пластового давления вод. Часто обводнение добываемой продукции происходит вследствие образования конуса подошвенной воды. Вытеснение нефти происходит за счет продвижения ВНК, приводящего к постепенному, но непрерывно увеличивающемуся росту содержания воды в продукции скважины.

На эксплуатационных объектах, имеющих зоны слияния пластов и представляющих собой гидродинамически единую систему, причиной обводнения добываемой продукции может стать наличие межпластовых перетоков между продуктивным коллектором, вскрытым эксплуатационным фильтром и смежными обводненными пластами.

Если разрез скажины в зонах, прилегающих и формирующих продуктивный интервал, представлен трещиноватыми породами, то смежные обводненные и нефтеносные пласты могут сообщаться через трещины, проходящие через них. В нетрещиноватых породах развитие подобных разломов может быть вызвано использованием кумулятивной перфорации при вскрытии продуктивных коллекторов.

Снизить обводненность добываемой продукции и интенсифицировать добычу нефти позволяют, в частности, технологии физико-химического воздействия на пласты. Воздействие может осуществляться как со стороны нагнетательных, так и со стороны добывающих скважин. Методы снижения обводненности и интенсификации добычи нефти, основанные на процессах со стороны нагнетательных скважин, как правило, требуют долговременного крупномасштабного применения и больших затрат. Поэтому во многих случаях целесообразно проведение ВИР на добывающих скважинах.

Основной объем ВИР составляют работы по герметизации эксплуатационных колонн, ликвидации заколонных перетоков и ограничению водопритока из обводненных нефтяных коллекторов, осуществляемые посредством тампонирования. Различные технические средства, такие, как дополнительные колонны, профильные перекрыватели, съемные летучки, не могут быть использованы для селективного ограничения притока вод из обводненных нефтеносных коллекторов. При проведении других видов ВИР технические средства применяются, как правило, когда технологический эффект не удается получить проведением работ по тампонированию. При тампонировании результативность ВИР определяется свойствами используемой водоизоляционной композиции. Таким образом, для успешного применения водоизоляционных композиций необходимо учитывать их преимущества и недостатки.

Критический обзор процессов структурирования полимеров в поровом объеме горных пород в присутствии пластовых флюидов позволил выдвинуть следующие основные требования к полимерным материалам, рекомендуемым для проведения ВИР в зависимости от геолого-технических условий:

1. Осадкообразующие и гелеобразующие полимерные материалы должны взаимодействовать с пластовыми водами; размеры образующихся в растворах ассоциатов должны быть достаточными для перекрытия поровых каналов и трещин и адсорбироваться на породе для формирования в поровом пространстве пристенных слоев, уменьшающих фазовую проницаемость по воде.

2. Олигомеры полимерных материалов должны отверждаться на основе реакций поликонденсации, поскольку степень конверсии их в поровом объеме пласта выше, чем при других видах полимеризации.

3. Общими требованиями для полимерных материалов, независимо от вида структурирования, является достаточная адгезия к породе в присутствии пластовых флюидов, способность к селективной адсорбции по отношению к гидрофильным минералам с образованием хемосорбционных связей, способность противостоять агрессивным воздействиям пластовых жидкостей и факторам, связанным с интенсификацией разработки.

Вторая глава посвящена теоретическому и экспериментальному обоснованию, конкретизации общего методического подхода к разработке тампонирующих материалов на основе акриловых полимеров. Полимеры на основе кислот акрилового ряда обладают комплексом свойств, отвечающих требованиям к перспективным водоизолирующим материалам. Наличие карбоксильных ионогенных групп обуславливает растворение полимеров в наиболее доступном растворителе - воде, взаимодействие с электролитами, содержащимися в пластовых водах, и образование при этом прочной тампонирующей полимерной массы.

Сополимеры на основе акриловых кислот обладают преимуществом по сравнению с другими водоизолирующими реагентами, так как могут сочетать в себе как гидрофильные, так и гидрофобные свойства. Причём, оптимальная совместимость этих свойств, соответствующая максимальной фазовой проницаемости по нефти и минимальной по воде, поддаётся регулированию. В работе показано, что сополимеры обладают селективными водоизолирующими свойствами относительно водоносного пласта вследствие избирательной фильтрации в водонасыщенную часть пласта, отсутствия взаимодействия в углеводородной среде с электролитами, заполняющими поровый объем, и минералами, составлявшими пласт. Приведенные в диссертации результаты промысловых работ, с использованием гидролизованного полиакрилонитрила, показывают значительный прирост по дебиту нефти и ограничение добычи попутной воды по сравнению с другими водоизолирующими реагентами.

В настоящей работе изучено взаимодействие гидролизованного полиакрилонитрила (гипана) и сополимера метакриловой кислоты с её диэтиламмониевой солью (сополимер МАК-ДЭА) с ионами многовалентных металлов. Установлено, что при взаимодействии гипана с солями трёх- и двухзарядного железа в водных растворах происходит образование полимерметаллических комплексов, стойких относительно пресных и минерализованных вод.

В ходе исследований с привлечением термографии, химического и рентгенофлюоресцентного анализа было установлено, что гидролизованный полиакрилонитрил образует с катионами железа /III/ и /II/ и меди комплексные соединения. Состав этих комплексов приведен в таблице 1.

Из таблицы 1 видно, что мольное отношение карбоксильных групп и металлов находится в пределах 1,25-1,53.

Большее число карбоксильных групп, входящих в состав полимерного лиганда, не может координироваться вокруг иона металла ввиду стерических трудностей. Ненасыщенные координационные связи заполняются более подвижными молекулами воды. Комплексообразование наблюдается при взаимодействии гидролизованного полиакрилонитрила с катионами алюминия, что подтверждается повышенной стойкостью тампонирующей массы, полученной таким способом, к пластовым жидкостям.

Таблица 1 - Состав металлополимерных комплексов

Вид катиона Содержание азота, % Содержание металла, % Содержание карбоксильных групп, мольн, % Мольное отношение карбоксильных групп и металлов
масс. мольн. масс. мольн.
Cu2+ 2,9 21,0 22,2 35 44 1,25
Fe2+ 2,9 21,0 17,9 32 47 1,47
Fe3+ 2,9 21,0 15,9 28 43 1,53


Pages:     | 1 || 3 | 4 |   ...   | 7 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.