авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 | 4 | 5 |

Гидродинамика двухфазных смесей в процессах бурения нефтяных и газовых скважин

-- [ Страница 1 ] --

На правах рукописи

ИСАЕВ ВАЛЕРИЙ ИВАНОВИЧ

ГИДРОДИНАМИКА ДВУХФАЗНЫХ СМЕСЕЙ В ПРОЦЕССАХ БУРЕНИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН

Специальность 25.00.15 – Технология бурения и освоение скважин

Автореферат

диссертации на соискание ученой степени

доктора технических наук

Москва – 2009

Работа выполнена в Российском государственном университете нефти и газа имени И.М. Губкина

Научный консультант доктор технических наук,

профессор Леонов Е.Г.

Официальные оппоненты: доктор технических наук,

главный научный сотрудник

Шеберстов Е.В.

доктор технических наук,

профессор Войтенко В.С.

доктор технических наук, профессор Гусман А.М.

Ведущая организация: Буровая компания ОАО

«Газпром» ООО «Бургаз»

Защита состоится "_08_"_декабря_2009 г. в _15.00_ часов в ауд. 731 на заседании Диссертационного Совета Д.212.200.08 при Российском государственном университете нефти и газа им. И.М. Губкина по адресу: 119991, ГСП-1, Москва, В-296, Ленинский проспект, д.65.

С диссертацией можно ознакомиться в библиотеке Российского государственного университета нефти и газа им. И.М. Губкина.

Автореферат разослан "_____"__________________2009 г.

Ученый секретарь диссертационного совета

доктор технических наук, профессор Б.Е. Сомов

Общая характеристика работы

Актуальность темы

Моделирование многофазных (гетерогенных) течений является одним из совремённых направлений, которому в последнее время уделяется большое внимание. Этот подход позволяет изучать на совремённом уровне двухфазные течения в различных технологических устройствах, поскольку методики, основанные на теории однофазных жидкостей, не всегда дают необходимые прогнозные оценки параметров потоков. Развитие бурения привело к созданию и использованию технологических двухфазных жидкостей различной реологии, сжимаемости и концентрации фаз, например, газожидкостная смесь, аэрированная жидкость, пена, жидкость или газ с твёрдыми частицами и так далее. Следует заметить, что горную породу также можно представить в виде тяжёлого менее сжимаемого скелета, содержащего более сжимаемые флюиды. Влияние свойств таких смесей на гидродинамические процессы в скважинах как при бурении, так и при добыче неоспоримо. В частности, расчёт характеристик движения двухфазных жидкостей в элементах циркуляционной системы скважины, в том числе при взаимодействии с горными породами, необходим при проектировании технологических процессов бурения и оперативном контроле их реализации.

В литературе имеется много работ, посвящённых частным двухфазным задачам бурения. Однако, до сих пор нет обобщённой постановки для одномерных двухфазных течений, встречающихся в бурении. Развитие новых направлений в бурении дополнительно расширило область использования методов механики гетерогенных сред, например технология бурения на депрессии. Таким образом, построение обобщённой одномерной гидродинамической модели движения двухфазных смесей в различных элементах циркуляционной системы скважины при бурении и с учётом взаимодействия с пластами в репрессионном и депрессионном режимах является насущной задачей. В диссертации указаны основные задачи установившихся и неустановившихся течений при бурении скважин, постановки которых следуют из обобщённой модели. В работе приведены как известные, так и вновь поставленные и решённые задачи гидростатики и гидродинамики.

В силу вышесказанного, эффективность проектов на строительство скважин и их дальнейшая реализация существенно зависят от используемых в них моделей, что сказывается на качестве разработки месторождений, в том числе на экологической обстановке окружающей среды. Поэтому дальнейшее развитие двухфазной гидродинамики бурения является одной из важнейших задач нефтегазодобывающей отрасли и, таким образом, тема диссертации является актуальной.

Цели диссертационной работы

- единое систематизированное описание гидродинамических процессов в циркуляционной системе (ЦС) скважина - пласт при бурении на основе общих представлений механики и основных уравнений гидромеханики гетерогенных сред;

- установление общих законов гидростатики ньютоновских (НЖ), неньютоновских (ННЖ) и многофазных жидкостей и их применение к технологии бурения;

- совершенствование одномерных моделей течения двухфазных смесей в элементах циркуляционной системы скважины;

- экспериментальное исследование процесса истечения газовых струй через слой НЖ и ННЖ;

- создание инженерных методик гидродинамических расчетов для их использования при строительстве скважин.

Научная новизна

1. Разработана модель двухфазной гидродинамики основных процессов бурения, исходя из общих законов механики и уравнений гидромеханики гетерогенных сред.

2. Обобщены законы гидростатики ньютоновских, неньютоновских жидкостей и многофазных смесей из них.

3. Созданы новые модели течения двухфазных смесей в циркуляционной системе скважины при бурении на репрессии.

4. Построена гидродинамическая модель движения двухфазной смеси при бурении скважин на депрессии.

5. Дано обоснование перехода от ламинарного течения к турбулентному при движении вязкопластической жидкости (ВПЖ) в трубах.

6. Впервые проведены экспериментальные исследования по определению дебита аварийно фонтанирующей газовой скважины через слой жидкости. Предложены эмпирические формулы для расчёта дебита газа.

7. Решена задача о распределении давления и температуры при движении газоконденсатной смеси в скважинах.

8. Решена задача определения максимального дебита газоконденсатной скважины с учётом теплообмена, в том числе с мёрзлыми породами.

Достоверность полученных результатов

Изложение гидромеханики бурения ведется с единых позиций механики сплошных сред и обеспечивается применением теории и практики механики гетерогенных сред, рассмотрением двухфазных задач на базе развития общетеоретических концепций, сопоставления с известными решениями и экспериментальными данными.

Практическая ценность работы

Практическая ценность работы определяется успешным внедрением результатов решенных задач гидродинамики двухфазных жидкостей на различных предприятиях и в учебном процессе университетов нефтегазодобывающей отрасли.

Результаты работы вошли в два учебника и пять учебных пособий, написанных диссертантом в соавторстве, в программы учебных курсов по направлению “Нефтегазовое дело”, специальностей “Бурение нефтяных и газовых скважин” и “Физические процессы нефтегазового производства”, по которым читает лекции и автор диссертации.

Материалы диссертации также используются при обучении методам ликвидации газонефтеводопроявлений на курсах повышения квалификации работников нефтегазовой промышленности в тренажёрном центре РГУ им. И.М. Губкина.

Апробация работы

Результаты работы докладывались, демонстрировались и одобрены на всесоюзных, всероссийских и международных съездах, конференциях и симпозиумах. Автор докладывал основные разделы диссертации на научных семинарах: в институте механики МГУ им. М.В. Ломоносова; в институте проблем нефти и газа РАН; по гидромеханике в РГУ нефти и газа им. И.М. Губкина; на кафедре бурения нефтяных и газовых скважин и кафедре нефтегазовой и подземной гидромеханики РГУ нефти и газа им. И.М. Губкина.

Публикации

Основные материалы диссертации опубликованы в 43 печатных работах; из них 19 статей вышли в журналах, рекомендованных ВАК для публикации материалов по докторским диссертациям. Два учебника выпущены издательством "Недра"; один учебник, четыре учебных пособия и статьи напечатаны в других издательствах. Всего автором опубликовано 124 работы.

Основные защищаемые положения

1. Модель двухфазной гидродинамики процессов бурения.

2. Обобщение закона гидростатики для ньютоновских и неньютоновских растворов и их многофазных смесей.

3. Методика расчёта управления скважиной при бурении на депрессии

4. Методика расчёта распределений давления и температуры при движении газоконденсатной смеси в скважинах.

5. Методика расчёта максимального свободного дебита газоконденсатной скважины с учётом теплообмена как с обычными, так и мёрзлыми породами.

6. Методика расчёта цементирования скважин стабильными двухфазными растворами.

7. Формулы для определения перехода от ламинарного течения к турбулентному при движении вязкопластической жидкости в трубах.

8. Формула для расчёта коэффициента гидравлических сопротивлений при турбулентном течении вязкопластического раствора в трубах.

9. Модель и эмпирические формулы для расчёта дебита аварийно фонтанирующей газовой скважины через слой жидкости.

Объем и структура работы

Диссертация состоит из введения, 8 глав, выводов и рекомендаций, библиографии, включающей 347 наименований работ отечественных и зарубежных авторов. Диссертация изложена на 259 страницах машинописного текста.

Благодарности

Автор выражает глубокую благодарность профессору А.И. Владимирову за постоянное внимание к выполняемой работе.

Автор выражает искреннюю признательность профессору Е.Г. Леонову, в соавторстве с которым был выполнен ряд задач, и за содержательное обсуждение основных положений диссертации.

Соискатель благодарен коллегам и соавторам работ за участие в разработке отдельных вопросов диссертации, внедрении их в практику бурения нефтяных и газовых скважин и совершенствования подготовки специалистов и переподготовки кадров для отрасли.

Содержание работы

Во введении обоснована актуальность работы, сформулированы цель и основные задачи исследований.

В первой главе приведён обзор основных моделей многофазных (гетерогенных) сред и даются постановки задач гидромеханических многофазных течений, характерных при бурении нефтяных, газовых и газоконденсатных скважин. Отмечена пионерская работа по теории воздушного подъёмника Лоренца (1909) для нефтегазовой промышленности, в которой за исходное уравнение гидродинамической модели взято дифференциальное уравнение одномерного движения жидкости с основным предположением совместного течения газа и жидкости без относительных скоростей фаз. Эта работа послужила основой для многих работ и исследований течения смесей без относительных скоростей фаз и разработке моделей движения смесей.

В то же время шло нарастающее развитие моделей течения двухфазных и многофазных смесей в связи с развитием нефтегазового дела и применением двухфазных жидкостей не только в бурении. В работах (Н.М. Герсеванов, Б.Д. Бакланов и Р.И. Шищенко, Д. Верслюис, Т.Ф. Мур,
Г.Д. Уайльд, А.П. Крылов, А.А. Арманд, Т. Поэттман, П. Карпентер и многие другие) учитывались зависимости для истинного содержания фаз.

Прорыв в развитии теории двухфазных течений осуществил С.Г. Телетов, который, исходя из своих ранних работ, предложил (1945) осреднённые дифференциальные уравнения гидродинамики гетерогенных сред с использованием функций истинного содержания фаз, которые и в настоящее время применяются при решении задач в нефтегазовой отрасли.

Возрастающее внимание к двухфазным средам способствовало изданию монографий и учебников теоретического и прикладного характера для нефтегазовой направленности как в России, так и за рубежом следующих авторов: В.Г. Багдасаров (1947); В.А. Архангельский (1958); С.С. Кутателадзе, М.А. Стырикович (1958); К.В. Виноградов (1964); М.А. Гейман и В.И. Мусинов (1965); Г.Ф. Агаев (1966); Д.Ф. Файзуллаев (1966); А.О. Межлумов и Н.С. Макурин (1967); С. Л. Соу (1967); В.А. Мамаев, Г.Э. Одишария, Н.И. Семёнов и А.А. Точигин (1969); Г.Б. Уоллис (1969); М.С. Винарский и Н.М. Гончаренко (1969); Д.Ф. Файзуллаев, Р.С. Гурбанов и Я.М. Расизаде (1970); Дж. Хьюитт и Н. Холл-Тейлор (1970); В.А. Амиян и Н.П. Васильева (1972); Г.В. Циклаури, В.С. Данилин (1973); А.О. Межлумов (1976); Д. Баттерворс и Г. Хьюитт (1977); Р.И. Нигматулин (1978, 1987); В.А. Мамаев, Г.Э. Одишария, О.В. Клапчук и др. (1978); Д.Ф. Файзуллаев, А.И. Умаров и А.А. Шакиров (1980); В.Н. Николаевский (1984); А.Х. Мирзаджанзаде А.Х. и В.М. Ентов (1985); Е.Г. Леонов и В.И. Исаев (1987); Н.А. Гукасов (1988); В.Д. Малеванский и Е.В. Шеберстов (1990); А.И. Булатов, А.Г. Аветисов (19931996); А.И. Гриценко, О.В. Клапчук и Ю.А. Харченко (1994); А.А.Точигин и Г.Э. Одишария (1998); В.И. Ямпольский. (1999); Дж.П. Брил и Х. Мукерджи (1999); Ю.М. Басарыгин, А.И. Булатов, Ю.М. Проселков (2000); В.А. Сахаров и М.А. Мохов (2004); Л.Н.Полянин и В.П. Дробков (2004) и др.

Исходя из анализа литературы, в диссертации рассмотрены проблемы гидродинамики двухфазных смесей в буровых процессах на основе уравнений одномерного течения механики гетерогенных сред.

Во второй главе перечислены основные задачи гидродинамики двухфазных смесей в бурении.

При бурении гидродинамические двухфазные процессы протекают в системе скважина пласт, которая в простейшем виде состоит из двух частей (рис. 1): ЦС скважины, по которой жидкость, газ или их смесь, в том числе с твердыми частицами, движутся в скважине и буровой установке; один или несколько пластов пород, вскрытых скважиной. В свою очередь главными элементами (см. схему на рис. 1а) ЦС бурящейся скважины являются каналы круглого и кольцевого сечения большой протяжённости, поэтому в работе рассмотрены одномерные двухфазные течения в этих каналах при различных технологических процессах.

 Схема циркуляционной системы вертикальной скважины и график (эпюра)-0

Рис. 1. Схема циркуляционной системы вертикальной скважины и график (эпюра) распределения давлений в системе скважина-пласт при бурении на репрессии (стрелки указывают направление циркуляции):

а) Схема ЦС: 1 – кольцевое пространство (КП); 2 – бурильные трубы (БТ); 3 – утяжелённые бурильные трубы (УБТ); 4 – забойный двигатель; 5 – долото; 6 – замок; 7 - обсадная колонна; 8 – открытый (необсаженный) ствол; 9 - перекрытый слабый пласт; 10 - горная порода под башмаком последней спущенной обсадной колонны; 11 - вскрываемый пласт.

б) Распределение давлений в элементах ЦС (I – гидростатическое, II – при циркуляции в КП, III – при циркуляции в БК): 1–2, 3–4, 4–7 - за БТ; 2–3 – за замками; 7–8 – за УБТ; 8–9 - за двигателем; 9–12 – в долоте; 12–13 – в забойном двигателе; 13–14 – в УБТ; 14–15, 16–17 – внутри БТ; 15–16 – в замках.

Значения давлений: 5, 10 – пластовые давления рпл1, рпл2; 6, 11 – давления гидроразрыва (поглощения) рр1, рр2 в горной породе и нижнем вскрываемом пласте; 18 – забойное гидростатическое давление; 9 – забойное давление при циркуляции (промывке); 19 – гидростатическое давление в КП под башмаком обсадной колонны; 20 – давление в КП при промывке под башмаком; 21 – давление в стояке; 1 – давление в КП на устье.

В общем случае гидромеханическая программа работы системы скважина пласт будет спроектирована, если найдены и согласованы распределения параметров: 1) расходов фаз; 2) давлений; 3) плотностей; 4) напряжений; 5) концентраций фаз; 6) температур; 7) геометрических размеров элементов ЦС (длина, диаметр и расположение в пространстве, глубина расположения, радиус и толщина пластов); 8) характеристик компрессоров и насосов, цементировочных агрегатов и смесительных машин (подача, давление); 9) прочностных характеристик элементов системы; 10) характеристик подъемного механизма буровой установки (скорость и ускорение при спускоподъемных операциях); 11) характеристик забойных двигателей (перепад давления при различных расходах промывочной смеси); 12) гранулометрического состава выносимого из скважины шлама.

Распределения п.п. 16 связаны друг с другом общими уравнениями гидродинамики в области распределений п.п. 712, существующих при бурении. Описание гидродинамических процессов бурения сводится к нахождению соотношений, связывающих распределения п.п. 112.

На рис. 2 приведен перечень основных процессов 1.1–1.3 и 2.1–2.5 и связанных с ними задач 1.1.1–1.3.4 и 2.1.1–2.5.1, которые приходится рассматривать при бурении. Для них необходимо изучать распределения п.п. 1–12 при установившихся и неустановившихся течениях в элементах системы скважина пласт. При решении конкретной задачи находят одно или больше распределений п.п. 112 так, чтобы они не противоречили остальным. Например, распределение давлений в подземной части ЦС, которое часто приходится находить при осуществлении гидромеханического процесса бурения с промывкой жидкостью или смесями.

На рис. 1б построено искомое распределение (эпюра) давлений в ЦС некоторой вертикальной скважины при бурении при заданной компоновке бурильной колонны с учетом условий: давление в стояке рст не превышает допустимого давления насоса рдоп, т.е. выполняется соответствие распределениям п.п. 2 и 9; давление в необсаженных частях скважины выше давлений в проявляющих пластах рпл1, рпл2 и не превышает давлений поглощения или гидроразрыва рр1, рр2: рпл1 < р < рр1, рпл2 < р < рр2, т.е. выполняется соответствие распределениям п. 2 и 9; расходы жидкости Qкп в КП и на забое Qзаб обеспечивают вынос шлама и которые являются одними из значений распределения п. 1; разность распределений давлений в трубах ртр и КП ркп удовлетворяет условиям прочности труб рпр: |ртрркп|< рпр, т.е. соответствует п.п. 2 и 9.

В различных задачах ожидаемые давления зависят от характеристик п.п. 112 и подразумевается, что они удовлетворяют построенной эпюре давлений (рис. 1). При расчетах не обязательно вычислять всё распределение (эпюру) давлений. Например, при отсутствии слабых или проявляющих пластов достаточно определить только давление в стояке, которое не должно превышать допустимое давление в насосе.

Таким образом, основой всех гидродинамических расчетов является нахождение распределения давлений в элементах ЦС скважины или давления в заданном сечении элемента скважины. В диссертации, в основном, приводятся постановки и решение задач, полученные автором (см. пп. 1.1, 1.3 и 2.3 на рис.2).

 Перечень основных гидроаэродинамических процессов при бурении В третьей-1

Рис. 2. Перечень основных гидроаэродинамических процессов при бурении

В третьей главе рассматривается система одномерных уравнений движения двухфазных смесей для решения задач движения в элементах ЦС и методы решения. Приводятся уравнения сохранения массы, движения, энергии и замыкающих функций - уравнения состояния, истинного газосодержания и гидравлических сопротивлений.

С учётом имеющихся в литературе моделей гетерогенных сред за основу взята одномерная модель неустановившегося движения двухфазных смесей в элементах ЦС, состоящая из системы осредненных дифференциальных уравнений по живому сечению канала площадью S и замыкающих функций:

уравнений сохранения массы для каждой фазы

(1)

уравнения движения

(2)


Pages:   || 2 | 3 | 4 | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.