авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 8 |

Вулканогенно-осадочный литогенез в наземной рифтовой зоне исландии

-- [ Страница 4 ] --

В палагоните при больших увеличениях на всех биоморфных образованиях видны одиночные и скопления круглых комочков. Комочки и их скопления развиты в основном на внешней по отношению к изменяющемуся стеклу зональной поверхности палагонита. Распространены они неравномерно. Размер одиночных, самых мелких комочков не более 0,1 мкм. Скопления слившихся комочков образуют пятна разной величины (до 12 и более микрон). Иногда комочки близкого размера соединены и образуют цепочки. Среди хаотично расположенных наноструктур встречаются короткие (состоящие только из 56 комочков) и длинные (до 1 мкм) цепочки из комочков. Важно подчеркнуть, что рассматриваемые нанообразования встречены на поверхности биоморфных структур разной степени минерализации. На поверхности минерализованных микроорганизмов хорошей сохранности обычно располагаются единичные комочки, реже они слагают тонкий сплошной слой. Генезис рассматриваемых наноструктур в настоящий момент, из-за отсутствия возможности изучить их при больших увеличениях, остается проблематичным. Можно лишь предполагать, что это биохемогенные образования, возможно, минерализованные нанобактерии [Folk, Lynch, 1997].


Возможные причины возникновения зональной структуры палагонита

В настоящее время можно определенно говорить об участии микробиоты (бактерий, грибов, водорослей) при разрушении базальтового стекла в почвенном горизонте и в зоне выветривания на поверхности гиалокластитовых толщ, лишённых растительности. Установлено, что зональное строение палагонита хорошо выражено там, где встречено наибольшее количество биоморфных структур. Основываясь на этом, предполагается, что зональность палагонита формировалась в результате неравномерного микробиального воздействия на процесс разрушения стекла. Возможно, появление зональности в структуре палагонита связано с периодическими, сезонными изменениями температуры и увлажнения на поверхности земли. Определенную роль в жизнедеятельности микроорганизмов, участвующих в образовании палагонита могло играть чередование периодов разной длительности солнечного освещения (результат сезонного ритма фотосинтеза). Известно также, что бактерии являются очень чувствительным индикатором потоков флюидов и/или газа [Cragg et al., 1995]. Появление этих потоков или изменение их состава могло привести к увеличению или уменьшению бактериальной популяции, повлиять на ее активность и как следствие этого увеличение или уменьшение скорости процесса преобразования сидеромелана и замещения его палагонитом. Это может быть одной из возможных причин возникновения зональной структуры палагонита.

Эндогенное влияние на бактериальную активность и образование зонального палагонита в гиалокластитах, разбитых многочисленными разрывными нарушениями, в рассматриваемом случае представляется вполне вероятным, если учесть, что анализировавшиеся образцы отобраны в современной зоне рифтогенеза, отличающейся активной вулканической деятельностью и дегазацией из недр земли. Среди ряда возможных причин возникновения зонального палагонита в низкотемпературных условиях зоны выветривания наиболее интересной, требующей дальнейшего исследования, является связь интенсивности микробиологических процессов с поступлением газообразных углеводородов из недр Земли.

Глава 7. Гидротермальное изменение пород в рифтовой системе

Структурно-тектоническое положение Исландии на простирании Срединно-Атлантического хребта и особенности ее геологического строения предоставляют уникальную возможность изучать основные особенности гидротермального процесса, происходившего и продолжающегося в настоящее время в наземной рифтовой зоне. Здесь исследовалось влияние гидротермальной активности на поверхности земли (сольфатарные поля) и изменения мощных толщ наземных базальтоидов пресными гидротермами, а на полуострове Рейкьянес с участием морской воды.

Результаты этих исследований могут быть использованы в качестве сравнительного материала при рассмотрении аналогичных процессов в рифтах и рифтовых бассейнах на континентах в магматическом фундаменте, а также в древних отложениях вулканогенно-осадочного чехла.


Гидротермальное изменение гиалокластитов на поверхности земли

Специфика гидротермального процесса на поверхности земли состоит в том, что на сольфатарных и фумарольных площадках взаимоотношение нагретой воды и пара с породой происходит при очень медленном и незначительном по объему латеральном перемещении жидкой фазы. Здесь отсутствует промывной режим, характерный для подземных вод. На фумарольных площадках преобразование пород осуществляется под воздействием высокой температуры и поднимающихся к поверхности земли пара и газов. На участках с высоким стоянием грунтовых вод сольфатарная и фумарольная активность могут охватывать значительную по размерам площадь.

Условия образования и состав гидротермально измененных гиалокластитов в зоне выхода на поверхность высокотемпературных пресных вод изучались на ряде геотермальных полей (Крабла, Тейстарейкир, Наумафьядл, Хверагерди (Хенгидль). Анализ минерального состава и петрографических особенностей гиалокластитов изменённых на поверхности земли в геотермальной зоне Рейкьянес с участием морской воды показал, что они принципиально не отличаются от тех, которые располагаются в других высокотемпературных геотермальных зонах, питающихся пресной водой.

Анализ химического состава, содержания и распределения петрогенных и малых элементов в измененных гиалокластитах на сольфатарных полях и осадочных породах и исследование микроструктурных особенностей этих пород дает основание считать, что наблюдающиеся здесь вариации содержания As, Se, Sb, Br, I, Au, Ag и ряда других малых элементов могут быть связаны с их локальной аккумуляцией в процессе бактериальной деятельности.

Среди глинистых образований часто встречаются морфологически разнообразные биоморфноподобные структуры. По форме и небольшому размеру (1,5 x 4,5 мкм) они идентифицируются как минерализованные бактериальные палочки. В осадочных отложениях на поверхности и в порах минерализованной растительной органики сохранились образования по размеру (0,52,5 мкм) и морфологии сходные с кокоидными бактериями. Остатки минерализованных кокоидных бактерий (5,05,5 мкм) были обнаружены на поверхности фрагмента частично растворенного вулканического стекла. В составе биоморфных структур (шариках), располагающихся в порах окремневшей растительной органики, помимо кремнезема (3036%) были зафиксированы Al, Fe, а также иногда Mg, Ti и углерод (7.74%). В минерализованных бактериальных палочках, среди прочих элементов установлено присутствие серебра (~ 1.7%). В некоторых шариках с высоким содержанием железа, обнаружен углерод и фиксируется серебро.

Много серебра в ассоциации с серой определено в глинистой массе в зоне скопления минерализованных биоморфных структур, напоминающих кокоидные бактерии. Здесь в гидротермально изменённых гиалокластитах найдены друзы микрокристаллов октаэдрического и ромбоэдрического облика, содержащие серебро (4175%) и серу (710%). По элементному составу кристаллы близки к аргентиту. Они находятся в тесном срастании с глинистыми чешуйками и кристаллами серы.

Связь аккумуляции в породе серебра и серы с микробиологической активностью подтверждается данными микроанализа, выполненного на скоплении минерализованных бактерий (палочки, гантели) в глинистой массе пролювиальных отложений сольфатарного поля Тейстарейкир (Ag 22-38%, S 4-5%). Почти во всех случаях локальной аккумуляции серебра, как в глинистой массе, так и в скоплениях минерализованных бактерий, фиксируется присутствие углерода (38%). Это рассматривается как определенное подтверждение проявления микробиологической активности в процессе формирования биоморфноподобных образований и участия микробиоты при локальной аккумуляции серебра. При определении элементного состава минерализованных бактерий установлено, что главными компонентами здесь являются серебро, сера и углерод. Кремнезём, Al, Fe и Mg присутствуют в небольшом количестве и свидетельствуют, вероятно, о возможном присутствии на анализировавшемся участке смектита.

Обогащение малыми элементами (Au, As, Se, Sb) гидротермально измененных глинистых осадочных отложений голоцена было установлено на современной геотермальной площади в юго-западной части рифтовой зоны Исландии и связывается с метаболической активностью бактерий и грибов [Гептнер и др., 2006].

Гидротермальное преобразование вулканогенных и вулканогенно-осадочных отложений

Основные особенности распределения вторичных минералов на современных высоко- и низкотемпературных полях установлены по результатам бурения на достаточно большую глубину с температурами превышающими 250°С и подробно освещены в литературе. Проницаемость пород на разбуренных участках высокотемпературных гидротермальных зон варьирует в широких пределах. Наибольшая проницаемость наблюдается в зоне распространения системы субвертикальных разрывов.

В низкотемпературной области уровни минерализации установлены и хорошо выделяется по смене цеолитов (см. таблицу). Шабазит доминирует в слабо прогретых и наименее изменённых породах. Здесь же встречаются опал, кальцит, а из цеолитов левин. Для следующей, при повышении температуры, цеолитовой зоны характерными являются мезолит и сколецит. Иногда эта зона совмещается с третьей, стильбитовой зоной. Четвертая зона всегда хорошо выражена, отличается большой мощностью, располагаясь в основании цеолитовых зон. Доминирующим цеолитом здесь является ломонтит. Совместно с ним иногда встречается стильбит и может присутствовать анальцим. Среди кремнистых минералов в низкотемпературной области изменения большую роль опал играет, замещаясь на глубинах порядка 1000 м кварцем. Предполагается, что только при температуре выше 120°С кварц становится доминирующим кремнистым минералом. В составе глинистых минералов в верхней относительно слабо прогретой части разреза преобладают триоктаэдрические, железистые смектиты, которые с глубиной и повышением температуры сменяются сначала смешанослойным смектит-хлоритовым комплексом, а затем хлоритами. В некоторых районах в зоне широкого распространения смектитов встречается селадонит.

Схема регионального гидротермального изменения и

распределения вторичных минералов в платобазальтах Исландии1

Зоны изменения ~ T, °C Минералы индикаторы Характерные минеральные комплексы Зоны цеолитизации ~ T, °C Региональные метаморфические фации
I 50 100 150 Смектиты цеолиты Цеолиты (шабазит, мезолит, сколецит, жисмондин, томсонит, стильбит, гейландит, эпистильбит, морденит, анальцим, левин) смектиты, селадонит, опал, кварц, кальцит, апофиллит, гиролит Цеолиты (ломонтит, морденит, гейландит, анальцим, вайракит), смектиты, смешанослойные смектит-хлориты, кварц, кальцит Шабазитовая -------- 70 ----- Мезолит-сколецитовая --------- 90 ---- Стильбитовая --------- 110 -- Ломонтитовая Низкотемпературная зона гидротермального изменения. Смектит-цеолитовая фация
II 200 Смешанослойные смектит-хлориты Смешанослойные смектит-хлоритовые минералы, разбухающие хлориты, пренит Высокотемпературная зона гидротермального изменения. Зеленосланцевая фация
III 250 Хлорит-эпидот Хлорит, эпидот, пренит, альбит (по вулканическому стеклу, в интерстициях, по плагиоклазам), сфен, калиевые полевые шпаты
IV 300 Хлорит-актинолит Хлорит, альбит, актинолит


Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 8 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.