авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 || 4 |

Прогноз и выбор оптимальных параметров теплового режима при строительстве, эксплуатации и комплексном использовании горных выработок в криолитозоне

-- [ Страница 3 ] --

Результаты исследований показали, что место расположения установок существенно влияет на суммарные энергетические затраты и в данном примере позволяет снизить их на 1535%. Установлено, что при переменном расходе воздуха в выработках распределение источников энергии по длине должно быть неравномерным. Получены формулы для определения оптимального расстояния между источниками в зависимости от закона изменения расхода воздуха в выработке и определена длина вентиляционного пути, при которой целесообразно использовать одну энергетическую установку, т.е. применять центральную схему регулирования теплового режима. На рис. 4 приведены графики изменения отношения расстояния между установками в зависимости от коэффициента доставки воздуха и различного числа энергетических установок в выработке. Из графиков видно, что с уменьшением коэффициента доставки отношение увеличивается, т.е. размещать установки по длине выработки для достижения максимального энергетического эффекта надо неравномерно. В случае постоянного расхода воздуха наиболее эффективным является равномерное распределение источников по длине.

Проведенные исследования послужили теоретической основой для разработки нового класса систем регулирования теплового режима, защищённых авторскими свидетельствами и патентами, которые позволяют существенно (до 30%) сократить затраты на обеспечение нормативных параметров микроклимата в подземных сооружениях криолитозоны.

3.Формирование энергетически эффективного теплового режима в подземных сооружениях криолитозоны, обеспечивающего комплексное использование горных выработок, должно проводиться на основе выбора рациональных объемно-планировочных решений по тепловому фактору и достигается оптимальными параметрами вентиляционного режима, циклического проветривания и нестационарной реверсии вентиляционной струи.

Новая концепция освоения подземного пространства при управлении процессами по критерию экономии энергии заключается в поэтапном использовании горных выработок для целей связанных и не свя­занных с горным производством, путем включения их в единую систему вентиляции и кондиционирования рудничного воздуха. Для реализации этой идеи разработаны и научно обоснованы новые тех­нические решения по комплексному использованию горных выработок, в частности, по проектированию и строительству модульных подземных соо­ружений.. Проведенные комплексные оценочные тепловые расче­ты показали, что в случае возникновения ЧС возможно обеспечить норма­тивные параметры микроклимата в защитных сооружениях, размещаемых в выработках двойного назначения, в необходимые сроки, не нарушая при этом тепловой и вентиляционный режим основных технологических модулей. Использование модульного принципа возможно и на действующих горнодобывающих предприятиях. На основе научного обоснования целе­сообразности включения выработок отработанных горизонтов горнодобывающих предприятий в системы вентиляции и кондиционирования рудничного воздуха, разработки новых способов регулирования теплового режима шахт и рудников Севера, методов расчета рациональных схем подготовки шахт­ных полей и объемно-планировочных схем подземных сооружений созданы конкретные схемы вскрытия месторождений малых рудных тел области многолетней мерзлоты, рудников средней мощности при переходе горных работ на подмерзлотные горизонты, а также схемы компоновки подземных холодильников и х­ранилищ. Разработанные схемы вскрытия и подготовки месторождений поз­воляют в среднем на 30-40% сократить энергетические затраты на кондиционирование рудничного воздуха. Предложена новая модульная схема компоновки подземных холодильников, основанная на использовании холодоаккумулирующих камер двойного назначения. При этом часть камер используется в обычное время в качестве элемента общей системы кондиционирования воздух в сооружении, а в условиях чрезвычайных ситуаций в качестве защитного сооружения. Использование нового подхода к проектированию подземных холодильников позволяет во многих случаях отказаться от использования холодильных устано­вок или свести их мощность и время работы для поддержания нормативных параметров микроклимата в эксплуатационных камерах до минимума. Для реализации нового принципа при проектировании был разработан программный комплекс для ПЭВМ, с помощью которого представляется возможным выбрать оптимальные по энергетическому фактору объемно-планировочные решения подземных сооружений. Результаты математического моделирования позволили установить основные закономерности формирования теплового режима при наличии камер двойного назначения. В частности, на основании обработки данных, полученных в результате математического моделирования, установлена следующая закономерность: параметры целиков подземных сооружений криолитозоны зависят от температурных режимов эксплуатации соседних камер, причем существует оптимальное значение ширины целика, определяющее энергетическую эффективность функционирования подземного сооружения. На рис.5 приведены графики, подтверждающая данную закономерность.

а) б)

Рис. 5. Изменение температуры в центре междукамерного целика (а) и рациональная (по минимуму температуры в центре целика в

сентябре третьего года эксплуатации) ширина междукамерного

целика при эксплуатации камер с различной температурой и проморозкой при температуре, равной –40ОС (б).

Из графиков следует, что в зависимости от выбранного из технологических соображений порядка расположения камер должна изменяться и ширина междукамерного целика. Т.е., при проектировании подземных сооружений криолитозоны, в частности холодильников, расчеты междукамерных целиков необходимо проводить по двум определяющим факторам: устойчивости пород и тепловому, а в проектные решения закладывать наибольшее из полученных значений ширины целика.

Разработана методика выбора оптимальных параметров разделительных перемычек подземных объектов специального назначения, обеспечивающих не только заданный уровень безопасной эксплуатации конкретного объекта в различных нормативных режимах, но и повышающих энергетическую и экономическую эффективность использования объекта в обычный период, а также гарантирующих оптимальность проектных решений. В частности, оптимальная толщина изоляционного слоя перемычки определяется из следующего выражения

м

Здесь Сэ – стоимость электрической энергии, руб/квт.ч; См – стоимость материала теплоизоляции с учетом затрат на возведение второго слоя перемычки, руб./м3; о, – толщина бетонного и теплоизоляционного слоя, м; 0, 1 – коэффициент теплопроводности бетона и теплоизоляционного материала, Вт/м К; Ка – коэффициент амортизации средств, 1/год; Т1,Т2-температуры воздуха в разделяемых камерах, К; – количество часов эксплуатации камеры в году, час/год.

На базе проведенных исследований и установленных закономерностей обоснованы основные принципы проектирования подземных сооружений в криолитозоне при управлении процессами по критерию экономии энергии. К основным из них ним относятся:

- использование специальных холодоаккумулирующих выработок, в том числе двойного назначения;

  • выбор оптимальных режимов проветривания выработок подземного сооружения с целью максимального использования природного холода;

- управление тепловым режимом камер с помощью специальных теплоизолирующих покрытий, которые одновременно выполняют функцию крепи;

  • выбор оптимальных объемно-планировочных решений, в частности ширины междукамерных целиков по энергетическому фактору и пролета камер в зависимости от температурного режима эксплуатации;
  • выбор оптимальных параметров разделительных перемычек.

Вариантные расчеты показывают, что реализация приведенных принципов позволяет существенно сокра­тить затраты энергии на обеспечение нормативных параметров микроклимата, а в некоторых случаях полностью отказаться от использования кондиционирующего оборудования. Совокупность результатов исследований позволяет при проекти­ровании новых и реконструкции действующих подземных сооружений различного назначения максимально учесть влияние теплового факто­ра на эксплуатационные характеристики и обеспечить минимум энерге­тических затрат для создания нормативных параметров микроклимата

Оценка энергетической и экономической эффективности использования нестационарных вентиляционных режимов для регулирования теплового режима, в частности влияние изменения расхода воздуха в годовом цикле для достижения заданного критерия качества (рис. 6), за который в данном случае принята температура поверхности горных пород (T 0°C) на заданном расстоянии от начала горной выработки, выявила следующую закономерность.

 Изменение температуры стенки в конце горной выработки при различных расходах-13

Рис. 6. Изменение температуры стенки в конце горной выработки при различных расходах воздуха в зимний период.

1 – при максимальном – 15 м3/с; 2 – при минимальном – 5 м3/с;

3 – при оптимальном.

Достижение критерия качества: возможно как при максимальном, так и при оптимальном расходе воздуха, но условный суммарный расход воздуха в течение зимнего цикла во втором случае почти в 1,5 раза ниже. То есть, регулирование расхода воздуха в течение периода охлаждения без ущерба для критерия качества позволяет снизить энергозатраты в рассматриваемом случае в два раза.

Для оценки эффективности различных режимов проветривания были разработаны алгоритмы и программы для численного моделирования температурных условий в горных выработках и окружающем их массиве пород при циклическом проветривании, неравномерной периодической реверсии вентиляционной струи с изменением расхода воздуха. Результаты моделирования позволяют выбрать оптимальные по тепловому фактору расходы воздуха в период реверсии струи и мощность управляющей энергетической установки. Результаты отдельных численных расчетов по программам представлены на графиках (рис. 7).

Рис. 7. Изменение температуры воздуха и горных пород по длине выработок холодоаккумулирующего модуля при реверсии

вентиляционной струи.

Как видно из графиков, при реверсии вентиляционной струи после пяти суток проветривания с температурой на входе в выработку, равной -40°С, на седьмые сутки температура на почти половине длины выработки поднимается в среднем на 10—15°С. Соответственно и мощность энергетической установки, которая необходима для дальнейшего увеличения температуры в модуле после прекращения реверсии значительно уменьшается. Если необходимо вновь использовать выработку в качестве аккумулирующего модуля (отмена назначения на переоборудование), то, как видно из нижнего графика на рис.7 уже на вторые сутки положение, практически восстанавливается. На графиках справа показано изменение температуры при реверсии вентиляционной струи после 33 суток промораживания. Хотя абсолютные значения температуры прогрева в этом случае ниже, но общая тенденция сохраняется и эффективность реверсии очевидна.

Энергетическая эффективность циклического проветривания выработки определялась путем сравнения с постоянным проветриванием с неизменной скоростью. При проведении исследований в качестве сравнительных функций использовались: а) суммарные затраты на вентиляцию выработки при циклическом и постоянном проветривании; б) увеличение (уменьшение) общей длительности проветривания выработки для достижения заданного критерия качества; в) снижение (увеличение) длительности интенсивного проветривания (проветривания с максимальной скоростью воздуха). В качестве критерия качества использовалось количество холода, накопленного в породах, за заданный промежуток времени при постоянном проветривании выработки с неизменной скоростью. Результаты математического моделирования позволяют утверждать, что эффективность циклического способа проветривания по сравнению с простым понижением скорости значительно выше. Так, уменьшая время интенсивной вентиляции при циклическом проветривании выработки в два раза, мы снижаем темп охлаждения пород всего в 1,2 раза. Установлено также, что с течением времени эффективность циклического проветривания по сравнению с простым уменьшением скорости возрастает, т.е. темп изменения температуры, как на стенке выработки, так и по глубине для циклического случая выше, чем для случая простого уменьшения скорости Подтверждением этой закономерности могут служить результаты численных расчетов, приведенных в виде графиков на рис.8, где показано сравнение характеристик циклического и постоянного проветривания при различных периодах цикла для достижения одинакового уровня охлаждения породного массива в пределах деятельного слоя. По результатам проведенных исследований можно сделать вывод, что циклический способ проветривания является эффективным инструментом управления температурным режимом горных пород, окружающих выработки, для целей накопления заданного количества холода (тепла) при управлении процессом вентиляции по критерию экономии энергии.

 Сравнение характеристик циклического и постоянного режимов проветривания-15

Рис.8. Сравнение характеристик циклического и постоянного

режимов проветривания горной выработки

1-степень снижения (экономии) затрат; 2-степень увеличения

общей длительности проветривания; 3 - степень снижения

длительности интенсивного проветривания.

4. Нормативные параметры микроклимата в подземных сооружениях криолитозоны как в обычный, так и чрезвычайный периоды эксплуатации достигаются оптимизацией параметров теплоизоляции и использованием новых многофункциональных теплозащитных несущих конструкций на основе набрызг-бетона с изменяющимися по координатам физико-механическими свойствами.

На основе теоретических исследований разработаны аналитические методы расчета оптимальных параметров тепловой защиты подземных сооружений двойного назначения, которые обеспечивают их безопасную эксплуатацию в течение заданного времени. Отличительной особенностью выбора параметров тепловой защиты подобных объектов, является зависимость оптимального термического сопротивления от времени. Были рассмотрены сооружения цилиндрической и сферической симметрии. Зависимости получены из решения соответствующих задач теплообмена в безразмерном виде для критерия Био как функции других определяющих параметров, в частности чисел Фурье и Коссовича. Критерий Био определялся для условий эксплуатации подземных сооружений, не допускающих и допускающих оттаивание пород на заданную глубину за нормативный период времени. По известным числам Био определялось необходимое термическое сопротивление теплозащитного слоя, в том числе и для случая многослойной теплозащитной конструкции. Зависимости получены в простой аналитической форме, удобной для инженерных расчетов, а результаты вариантных расчетов представлены в виде номограмм. Например, для шаровой симметрии (сооружения камерного типа) выражения имеют вид:

а) для покрытий, не допускающих оттаивание пород

,

б) для покрытий, допускающих оттаивание на заданную глубину

; ;

; ; ; ; ;

Здесь: S и t, соответственно, безразмерные глубина оттаивания и температура воздуха в сооружении; Bi, F0 и K0 - критерии Био, Фурье и Коссовича.

Для оперативных расчетов построены номограммы (рис.9), охватывающие широкий диапазон условий эксплуатации подземных сооружений криолитозоны.

Рис.9. Номограмма для определения чисел Био контактирующих конструкций цилиндрической симметрии, допускающих

оттаивание пород на заданную глубину.

Выполненные оценочные расчеты для различных геокриологических условий показывают, что даже при температуре пород, близкой к температуре плавления льда, можно обеспечить безопасную эксплуатацию подземных сооружений в нормативные сроки. При этом установлено, что с увеличением сроков эксплуатации и повышением естественной температуры породного массива, целесообразно проводить дополнительное охлаждение горных пород в пределах деятельного слоя. В характерных случаях, предварительное охлаждение пород позволяет снизить нормативное число Био почти в 3 раза, т.е. существенно снизить термическое сопротивления теплоизоляционного слоя. Получены зависимости для выбора рациональных параметров предварительного охлаждения пород до необходимой температуры, в частности длительности периода охлаждения и скорости вентиляционной струи.

Задачей экспериментальных исследований являлось установление качественных и количественных особенностей теплообмена в экспериментальной тупиковой выработке, имеющей участки с теплоизоляцией из пенополиуретана и без нее. В результате натурных наблюдений установлено, что наличие теплоизоляции существенно снижает интенсивность теплообмена между воздухом и горными породами: температурный перепад воздуха по длине выработки на теплоизолированном участке, в среднем, был равен 0,3 град/м, а на участке без теплоизоляции — 0,8 град/м. Тепловую эффективность проветривания экспериментальной выработки можно охарактеризовать разностью теплосодержания входящей и исходящей вентиляционной струи(QJ ).. В таблице 3 приведены расчетные значения QJ для участков выработки с теплоизоляцией и без нее. Полученные величины существенно отличаются друг от друга, что свидетельствует о более интенсивных теплообменных процессах на участках без теплоизоляции.

Таблица 3.

Интенсивность теплообмена на различных участках выработки

Характеристика участков Расход воздуха кг/с Темпера­тура в начале участка,0С Температура в конце участка, °С Интенсивность теплооб-мена, Дж/с
с тепло-изоляцией 1.04 1.01 1.95 1.62 6 16 22 28 4.7 13.8 19.1 24.5 861 2121 4907 10904
без тепло-изоляции 1.04 1.01 1.95 1.62 6 16 22 28 4.3 12.5 18.2 21.6 1309 4650 14840 14350


Pages:     | 1 | 2 || 4 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.