авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 2 | 3 ||

Обоснование и разработка методов изучения структурных особенностей углей для определения динамики их свойств под влиянием внешних воздействий

-- [ Страница 4 ] --

Все вышеприведенное указывает на то, что использование традиционных методов, таких как ИК-спектроскопия и функциональный анализ углей, а также разработанного метода, основанного на определении показателей сорбции углями ДМФА, позволяет оценить структурно-химические параметры углей разных генотипов. Соотношение в составе углей разных генотипов алифатического и ароматического углерода, содержания общего и функционального кислорода, а также степень сорбционного снижения прочности углей отражают особенности их надмолекулярной структуры и определяют динамику изменения микротвердости, трещиноватости и хрупкости при тепловой обработке и сорбционном деформировании.

Пятая глава посвящена разработке методов оценки и прогноза склонности углей разных генотипов к окислению и самовозгоранию на основании структурно-текстурных и структурно-химических параметров углей.

Окисление углей - это процесс, который сопровождает все этапы их добычи, обогащения, хранения и переработки. Окисление углей в пластах приводит к разрушению массивов, образованию большого количества мелочи и зачастую к самовозгоранию. Окислительные процессы при хранении и подготовке углей сопровождаются также частичной потерей их потребительских свойств.

Существуют разные методы оценки склонности углей к окислению. Эти методы основаны на исследовании петрографического состава углей, их стадии метаморфизма и спекаемости, состава летучих продуктов термического разложения, на оценке атомных групп, содержащих кислород и т.д. Однако на сегодняшний день надежного метода, позволяющего оценить склонность углей разных месторождений к окислению, не существует. Это связано в первую очередь со сложным механизмом самого процесса окисления, а также различными его проявлениями, такими как разрушение, потеря прочности, уменьшение количества углерода, самовоспламенение и т. п.

В самом общем случае процесс окисления углей состоит из двух стадий: первая - диффузионная, связанная с транспортом кислорода к твердой поверхности угля и вторая - химическая реакция окисления углерода. Если для оценки второй стадии (химической реакции) существуют достаточно надежные параметры, отражающие химический состав углей, то для первой стадии - диффузионной, такие параметры практически не выявлены.

Экспериментальные исследования окисления углей проводили при температурах 150-300 0С на образцах разной крупности. Установлено, что такая обработка приводит к образованию трещин и разрушению материала. Однако для углей разных генотипов количественные показатели трещиноватости и характер трещин существенно различаются. Данные, приведенные на рисунке 12 показывают, что относительное количество участков, затронутых трещинами (Т), образующихся при окислении, больше для угля I генотипа.

При исследовании морфологии трещин проявились четкие различия для углей разных генотипов (рисунок 13). Для углей I и II генотипа характерно образование густой сетки трещин, затрагивающих все зерно и приводящих к нарушению его сплошности. Трещины окисления углей III и IV генотипов имеют клиновидную форму, не нарушают сплошности материала и не имеют определенных направлений.

Окисление приводит к изменению показателей, характеризующих химический состав углей: увеличивается содержание кислорода, уменьшается содержание водорода и углерода. С учетом полученных ранее данных по функциональному составу углей становится объяснимым полученный при исследовании химического состава окисленных углей результат: при сравнении изометаморфных углей разных генотипов установлено, что относительное уменьшение содержания углерода при термоокислении больше для углей IV генотипа (рисунок 14). Это дает возможность сделать вывод, что в рамках одной стадии метаморфизма угли IV генотипа проявляют большую склонность к самовозгоранию.

Рисунок 12.

Изменение трещиноватости (Т) углей при окислении : — I генотипа, ----- IV генотипа

а б

Рисунок 13. Трещины в окисленных углях: а – IV генотипа, б – I генотипа

Известно, что склонность углей к окислению и самовозгоранию определяется в значительной степени их микропористостью. Исследование микропористости углей разных генотипов методом сорбции диоксида углерода при комнатной температуре на автоматическом сорбтометре Hiden Analytical Ltd. позволило установить, что угли III-IV генотипов характеризуются большей микропористостью по сравнению с изометаморфными I-II генотипов (рисунок 15).

Рисунок 14. Относительное изменение содержания в углях разных генотипов углерода (С, %) в зависимости от температуры окисления

Рисунок 15.

Распределение микропор (dV/dr) по размерам (r) в углях разных генотипов

На основании полученных результатов была разработана «Методика оценки склонности углей к окислению и самовозгоранию». В соответствии с этой методикой склонность углей к окислению и самовозгоранию определяется комплексом параметров: стадией метаморфизма угля, содержанием мацералов группы витринита, генетическим типом угля (по значениям ФШС-параметров), содержанием общего и функционального кислорода, а также степенью уменьшения содержания кислорода при термоокислении. Методика апробирована на углях разных месторождений и используется на предприятии «Центр мониторинга социально-экологических последствий ликвидации шахт Восточного Донбасса» (г.Шахты, Ростовской области) для оценки состояния отработанных угольных выработок с точки зрения их пожарной безопасности.

В шестой главе рассматриваются вопросы, связанные с применением полученных закономерностей и разработанных методик для управления качеством добываемого топлива и возможностью его комплексного использования.

Вопросы управления качеством угольной продукции напрямую связаны с созданием методов и средств информационного обеспечения производства. В настоящий момент методы оценки качества угольной продукции ориентированы на существующие технологии энергетического сжигания и слоевого коксования углей и основаны на достаточно ограниченной номенклатуре показателей, устанавливающих марку и регламентирующих основные технологические свойства углей (зольность, теплоту сгорания, влажность, содержание серы). Однако при переходе к ресурсосберегающим экологически безопасным технологиям добычи и переработки сырья необходимо расширять номенклатуру показателей качества. В переработке углей к таким технологиям относятся производство экологически чистого водоугольного топлива (ВУТ) для получения тепла и электроэнергии, технологическая переработка угольных суспензий, газификация, различные методы подготовки сырья (термоподготовка, избирательное дробление, брикетирование) для повышения экологической безопасности традиционных и новых способов переработки, а также совместная переработка углей с твердыми бытовыми отходами (ТБО).

Полученные в работе результаты показали, что базовые физико-химические и физико-механические свойства существенно зависят от структурно-текстурных и структурно-химических особенностей углей разных генотипов. Для оценки углей как сырья для получения ВУТ и оперативного контроля производства разработана «Методика определения гранулометрического состава мелких классов углей», основанная на параметризации изображений угольных порошков, полученных при микроскопическом наблюдении в проходящем свете, и обработке полученных данных с использованием лицензионного программного обеспечения IMAGESCOPE M (разработчик ОАО «Системы для микроанализа»).

В таблице 3 представлены результаты исследования гранулометрического состава и стабильности ВУТ, полученных из углей разных генотипов. Показано, что высокая неоднородность органического вещества углей I генотипа определяет более широкое распределение частиц по крупности, обеспечивающее, как известно, бльшую стабильность суспензии. Исследование горения этих топлив показало, что ВУТ на основе углей I генотипа характеризуются большими скоростью и теплотой сгорания. Разработанная методика используется на ОАО «Ковдорский ГОК» с целью подбора угольного сырья для получения водо-угольного топлива, определения оптимальных режимов диспергирования углей и экспресс-контроля технологического процесса.

Таблица 3.

Характеристики ВУТ

Генотип углей (IV) (I) (I) (III) (IV) (I)
Статистические характеристики ВУТ dмин. 1,6 1,6 1,6 1,6 1,6 1,6
dсред. 71 132 218 97 68 158
dмакс. 5,9 9,0 5,4 4,3 5,1 9,2
СКО 6,3 11,0 6,5 4,0 4,0 12,0
Стабильность, % 50 20 20 50 50 20

Изучение термоподготовки углей в условиях, моделирующих различные условия промышленных процессов, показало, что структурно-текстурные особенностями углей разных генотипов определяются их прочностные свойства и склонность к окислению. Последнее является весьма существенным фактором, влияющим на снижение калорийности топлив.

Утилизация твердых полимерных отходов в процессы коксования углей уже сегодня реализуется в промышленно развитых странах. И в этом случае особенности строения углей разных генотипов определяют качество конечного продукта –кокса и состав побочных продуктов (каменноугольной смолы и коксового газа). На основании экспериментальных работ по совместному коксованию углей с полимерными продуктами разного состава были установлены основные требования к составу угольных шихт и определены критерии выбора углей для получения кокса удовлетворительного качества.

Таким образом, параметры, отражающие структурные особенности углей разных генотипов, являются, наряду с традиционными показателями, критериями, определяющими качественные характеристики углей. Включение этих параметров, в номенклатуру характеристик углей позволит расширить возможности управления качеством топлива. а также обеспечить его комплексное использование.

Заключение

В диссертации, представляющей собой научно-квалификационную работу, на базе проведенных автором экспериментальные и теоретических исследований, решена крупная научная проблема обоснования и разработки методов изучения структурных особенностей углей для определения динамики их свойств под влиянием внешних воздействий, что имеет важное значение для информационного обеспечения эффективного и безопасного ведения горных работ, а также управления качеством добываемого сырья.

Основные выводы и результаты диссертационной работы, полученные лично автором:

  1. Установлено, что основой для разработки методов изучения структуры углей являются представления об их генетическом типе, отражающем совокупность структурно-текстурных особенностей гелифицированного вещества.
  2. Показано, что параметризация изображений углей разных месторождений, полученных при микроскопическом наблюдении в проходящем поляризованном свете с использованием метода ФШС, позволяет получить количественные параметры, адекватно отражающие структурно-текстурные особенности углей разных генотипов. В качестве основных параметров предложены: – мера ступенчатости изменяющейся контрастности как среднеквадратическое отклонение значений контрастности от среднего уровня, S01 – фактор острийности в изменениях контрастности как мера нерегулярностей-всплесков.
  3. Установлены зависимости между структурно-текстурными ФШС-параметрами углей и их физико-механическими характеристиками, такими как микрохрупкость и гранулометрический состав при механическом измельчении. Увеличение параметров, характеризующих неоднородность угольного вещества, приводит к пропорциональному увеличению хрупкости углей. Так, при увеличении параметра от 8,5 до 33,2 микрохрупкость углей пропорционально повышается от 31 до 70%. Подобная зависимость наблюдается при сопоставлении параметров S01 и микрохрупкости. Структурная неоднородность углей I и II генотипов определяет более широкое распределение частиц по размерам при измельчении углей.
  4. Экспериментально установлено, что криогенное и комбинированное воздействия на угли приводят к их разрушению. Распределение частиц по классам крупности и характер образующихся трещин определяются структурно-текстурными особенностями углей разных генотипов.
  5. Установлено, что определение соотношения в составе углей алифатического и ароматического углерода, содержания общего и функционального кислорода, а также установление характеристик, описывающих сорбцию углями специфического сорбата – диметилфорамида, позволяют в комплексе оценить структурно-химические особенности углей.
  6. Установлены зависимости между структурно-химическими параметрами углей и их микротвердостью при сорбционных и термических воздействиях. Для углей III-IV генотипов термическая обработка приводит к незначительному повышению микрохрупкости, микротвердость при этом практически не изменяется. Напротив, после термообработки угли I-II генотипов характеризуются более высокой микротвердостью, а их микрохрупкость увеличивается в 2-3 раза.
  7. Экспериментально установлено, что характер разрушения углей при окислении и их склонность к самовозгоранию определяются структурно-текстурными и структурно-химическими особенностями органического угольного вещества. Трещиноватость углей при термоокислении определяется их генотипом: для углей I-II генотипов это величина на 20-30% больше соответствующего значения для углей IV генотипа. При сравнении изометаморфных углей разных генотипов установлено, что относительное уменьшение содержания углерода при термоокислении больше для углей IV генотипа. Это показывает, что в рамках одной стадии метаморфизма угли IV генотипа проявляют большую склонность к самовозгоранию.
  8. Получены новые данные о распределении микропор в углях разных генотипов. Установлено, что угли III-IV генотипов характеризуются большей микропористостью по сравнению с изометаморфными I-II генотипов.
  9. Разработаны критерии, позволяющие оценить поведение углей при термической обработке, при выборе сырья для получения ВУТ и для совместной переработки с твердыми полимерными отходами.

Основные положения и научные результаты опубликованы в следующих работах:

  1. Эпштейн С.А.Трещинообразование в углях разных генотипов. – Горный информационно-аналитический бюллетень.- 2009.-№9.- С.71-76.
  2. Чеглакова Н.С., Соколовская Е.Е., Эпштейн С.А., Савченко Л.И., Белякова О.С. Опыт ОАО «Москокс» по оптимизации состава угольных шихт. – Горный информационно-аналитический бюллетень.- 2009.-№9.- С.281-286.
  3. Эпштейн С.А. Физико-механические свойства витринитов углей разных генотипов. – Горный информационно-аналитический бюллетень.- 2009.-№8.- С.58-69.
  4. Подгаецкий А.В., Бунин И.Ж., Эпштейн С.А. Влияние комбинированной (криогенной и электромагнитной импульсной) обработки на механические свойства углей. - Горный информационно-аналитический бюллетень.- 2009.-№3.- С.159-168.
  5. Эпштейн С.А., Супруненко О.И., Ржевская С.В., Широчин Д.Л. Классификация и кодификация – гарантия обеспечения качества угольной продукции. - Уголь.-2009.-№1.-С.48-51.
  6. Эпштейн С.А., Монгуш М.А., Нестерова В.Г. Методы оценки склонности углей к окислению и самовозгоранию. – Горный информационно-аналитический бюллетень.- 2008.-№12.- С. 211-216.
  7. Эпштейн С.А., Барабанова О.В., Минаев В.И., Широчин Д.Л. Влияние термообработки на механические и физико-химические свойства углей разных генотипов. – Горный информационно-аналитический бюллетень.- 2008.-№5.- С. 371-375.
  8. Aipshtein S.A., Beliy A.A., Bunin A.V., Shirochin D.L. Sorption and Deformaion of Coals in The Gas and Liquid Media// Proceeding of International Conference on Coal Science and Technology. Nottingham, UK, August 28th - 31st 2007.- CD.- 13p. (Эпштейн С.А., Белый А,А, Бунин А,В, Широчин Д.Л. Сорбция и деформация углей в газовой и жидкой среде).
  9. Aipshtein S.A., Minaev V.I. Transformation of Coals at the Heat Treatment// Proceeding of International Conference on Coal Science and Technology. Nottingham, UK, August 28th - 31st 2007.- CD.-University of Nottingham.- CD.-University of Nottingham.- 10p. (Эпштейн С.А., Минаев В.И. Превращения углей при термообработке).
  10. Aipshtein S.A., Novikova V.A. Definition of inclination of coals to oxidation by petrographic and structural attributes // Proceeding of International Conference on Coal Science and Technology. Nottingham, UK, August 28th - 31st 2007.- CD.-University of Nottingham.- 8p.(Эпштейн С.А., Новикова В.А. Оценка склонности углей к окислению по петрографическим и структурным признакам).
  11. S.A.Aipshtein, O.I.Suprunenko, O.V.Barabanova. Substantial composition and reactivity of coal vitrinites from Donetsk and Kusnetsk basins // Proceeding of International Conference on Coal Science and Technology. Nottingham, UK, August 28th - 31st 2007.- CD.-University of Nottingham.- 6p. (Эпштейн С.А., Супруненко О.И., Барабанова О.В. Вещественный состав и реакционная способность витринитов углей Донецкого и Кузнецкого бассейнов).
  12. Эпштейн С.А., Барабанова О.В., Минаев В.И., Ж.Вебер, Широчин Д.Л. Влияние обработки углей диметилформамидом на их термическую деструкцию и упругопластические свойства. - Химия твердого топлива.- 2007.- №4.- С.22-29.
  13. Эпштейн С.А., Барковская В.А., Горлов Е.Г., Широчин Д.Л. Определение дисперсности композиционных водоугольных топлив. Горный информационно-аналитический бюллетень (ГИАБ).- 2006.-№1.- С.336-339.
  14. Aipshtein S.A., Minaev V.I., Shirochin D.L. New coals collection. The first results and prospects// Proceedings of 23rd International Pittsburgh Coal Conference, Pittsburgh, PA, 25-28 September, 2006. – CD. - ISBN#1-8909777-23-3.- 10p. (Эпштейн С.А., Широчин Д.Л., Минаев В.И. Новая коллекция углей. Первые результаты и перспективы).
  15. Эпштейн С.А., Барабанова О.В., Малькова В.В., Барковская В.А.Совместная переработка углей с полимерными добавками.- Горный информационно-аналитический бюллетень.-2005.-№11.- с.321-325.
  16. Эпштейн С.А., Барабанова О.В., Минаев В.И., Широчин Д.Л. Физико-химические предпосылки регулирования качества углей при термоподготовке.- Горный информационно-аналитический бюллетень.-2005.-№7.- С.342-345.
  17. Эпштейн С.А., Гагарин С.Г., Минаев В.И., Барабанова О.В. Влияние термообработки каменных углей разной степени восстановленности на сорбцию диметилформамида. - Химия твердого топлива.- 2005.-№5.- С.12-22.
  18. Гагарин С.Г., Эпштейн С.А., Барабанова О.В.Кинетика десорбции диметилформамида из разновосстановленных углей. - Химия твердого топлива. - 2005.-№3.- С.10-21.
  19. Эпштейн С.А., Супруненко О.В., Барабанова Л.В. Вещественный состав и реакционная способность витринитов каменных углей разной восстановленности. - Хи

    Pages:     | 1 |   ...   | 2 | 3 ||
     





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.