авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |

Геолого-геофизические исследования и модели природных резервуаров баренцево-карского региона с целью наращивания ресурсной базы углеводородов

-- [ Страница 5 ] --

С целью выяснение характера перехода «суша - море» для сеноманских отложений месторождения Каменномысское – море ООО «Газфлот» в 2001 г. провел морские сейсморазведочные работы 2D в зоне предельного мелководья до изобаты 4 м по старт-стопной технологии. Эти исследования были продолжены в 2002 г. на глубинах менее 4 м с использованием телеметрических буйковых станций и мелководных пневмоисточников. В настоящее время в транзитной зоне месторождения Каменномысское – море ведутся работы 3D, которые завершатся в 2009г.

На Северо-Каменномысском месторождении трехмерной съемкой с применением группового пневмоисточника Bolt 2800LL-X общим объемом 745 куб. дюймов (12,2) ООО «Севморгео плюс» было отработано 600 км2. Шаг точек ОГТ составил 25х25 м. Глубина изучения разреза достигла 5 сек. Обработка сейсмических материалов выполнялась в вычислительном центре ООО «Геофизические системы данных» с использованием рабочих станций SUN и пакета ProMAX 3D. Интерпретация сейсмических и геологических данных выполнена с использованием математического обеспечения компании Landmark.

Пути повышения эффективности сейсморазведочных работ
в Баренцево-Карском регионе

Как известно, с увеличением глубины залегания продуктивных толщ разрешающая способность сейсморазведки прогрессивно снижается вследствие уменьшения пористости коллекторов. В этом случае обычно привлекают метод анализа волнового поля, в частности, метод AVO (Amplitude versus offset), основанный на анизотропии сред с различным флюидонасыщением. Однако в условиях Западной Сибири положительных результатов применения AVO до настоящего времени не получено, что объясняется (А. Грегори) недостаточно высокой (менее 30%) пористостью песчано-глинистых коллекторов. Не удается получить удовлетворительные результаты и с привлечением, при обработке материалов сейсмики 3D, метода миграции до суммирования (PSDM).

В акватории Обско-Тазовской губ и в пределах Ямальского шельфа, в рамках «Программы геологоразведочных работ ОАО «Газпром» на 2002 – 2008 гг.» была выполнена оценка возможности использования спектрального анализа отраженных волн по сеноманским и более глубоким залежам УВ. Расчет амплитудно-частотного спектра проводился в скользящем переменном окне, по различным временным интервалам, что было необходимо для многократного перекрытия рабочего участка по вертикали и горизонтали.

Газовая залежь Бованенковского месторождения отмечалась понижением частот по сравнению с вмещающими породами на величину около 20 Гц.

Представляет интерес недавно разработанный для изучения зон трещиноватости метод «сейсмолокации бокового обзора» (ВНИИГеосистем).

В последние годы делаются попытки (Н.А. Караев, А.П. Тарков, В.Б. Левант и др.) использовать рассеянную компоненту сейсмологического поля для выделения объемных коллекторских зон, в частности участков трещиноватости в консолидированных породах фундамента.

Исследование сейсмической анизотропии с последующей геологической интерпретацией – одна из важнейших задач современной сейсмологии. Одним из наиболее перспективных в этом отношении методом является многоволновая сейсмика (МСВ) с трехкомпонентным раздельным приемом пакетов продольных, поперечных и объемных волн. По мнению Л.Ю. Бродова (1994), именно с МВС связанно будущее сейсморазведки при изучении зон тектонических нарушений и трещиноватости. Основой для этого являются исследования поляризации поперечных обменных волн.

Трудности практической реализации метода, особенно в морских условиях, связанны со способом и аппаратурой возбуждения поперечных волн.

4.1.2 Электроразведка

В 2001-2002 г.г. на Каменномысской и Парусной площадях силами «Иркутскгеофизики» по заданию ООО «Газфлот» были проведены работы дифференциально-нормированным методом электроразведки (ДНМЭ) с использованием аппаратуры SGS-E с целью поиска и оконтуривания газовых залежей, выделения геоэлектрических неоднородностей осадочного чехла, исследования зоны распространения мерзлоты под акваторией.

По результатам этих работ на Каменномысской площади были выделены зоны, соответствующие двум расположенным один под другим аномальным объектам с резко повышенными значениями коэффициента поляризуемости и времени релаксации. Именно такие значения характерны для углеводородных залежей.

Комплексное изучение многолетнемерзлых пород (ММП) в акватории Обской губы методом ДНМЭ было выполнено ЗАО «Пангея» на Адерпаютинской площади (Колесов, Вовк, Дзюбло, Кудрявцева, 2008). Необходимость в таких исследованиях диктуется резким увеличением скорости сейсмических импульсов в толще ММП превышающую в 2 - 3 раза скорость в талых породах. Как показывают расчеты, увеличение мощности ММП на 10 м в условиях Обско-Тазовской губ эквивалентно завышению структурной карты по кровле сеномана приблизительно на 5 метров. Установлено, что мощность ММП, помимо расстояния от берега, контролируется тектоническими нарушениями, что связанно, по- видимому, с повышенными тепловыми потоками вдоль тектонически ослабленных зон.

Кроме того, высокие удельные сопротивления и поляризуемость придонных осадков в зонах ММП позволяет картировать газогидратные скопления. Вышеперечисленные свойства ММП были использованы нами для уточнения геологической модели в сеноманских отложении Адерпаютенской площади, являющейся акваториальным продолжением Семаковского газового месторождения.

4.2. Поисковые геохимические исследования

С целью поиска газоконденсатных залежей в южной части Обской губы было проведено геохимическое опробование донного грунта. Всего было отработанно 500 станций. Определение местонахождения станций осуществлялась по спутниковой системе DGPS с использованием приемо-индикатора С-NAV.

Площадь исследований располагалась в южной части Обской губы, от острова Сенные Пугора Обской губы на юге до мыса Поворотный в Тазовской губе на севере. Глубины в пределах площади изменяются от 0,5 до 15 м, преобладающие в диапазоне 2- 4м. Распространены прибрежные бары с глубиной 0,3-0,5 м.

Проведены аналитические исследования донных проб:

- храмотографический анализ на свободный газ (С1- С6, Н2, СО2, N2 +О 2);

- на легкие углеводороды (жидкие С7- С9, включая ароматические);

- на тяжелые углеводороды (С10-С20).

Основной методикой расчетов служили теоретические разработки ВНИИ геосистем, основные положения которых базируются на явлении парагенезиса субвертикальных зонально-кольцевых геофизических, геохимических и биогеохимических полей.

В соответствии с типовой моделью формирования аномальных геохимических полей концентрации над скоплением углеводородов при обработке геохимической информации в пределах Обской губы выделились по стандартной методике кольцевые аномальные зоны I порядка, включающие наиболее информативные геохимические компоненты: метан (СН4), этан (С2Н6), сумма С10-С20.

Результаты полевых и лабораторных (аналитических) геохимических работ и анализ полученных данных позволил выделить ряд кольцевых аномальных зон по наиболее информативным геохимическим компонентам. Эти зоны, по-видимому, приурочены к продуктивным горизонтам осадочного чехла и контролируется структурно-тектоническими элементами Обской губы. Выделение аномалий геохимических полей концентраций, вероятно, связаны с газоконденсатными залежами в более глубоких горизонтах осадочного чехла или располагаются вблизи тектонических нарушений, в свою очередь являющимися проводником газовых компонент С10 – С20 и суммы ТУ (капельно-жидких фракций углеводородов.)

4.3. Поисково-разведочное бурение

Глубокое бурение на приямальском шельфе начато в акватории Обской губы в 2000г. (ООО «Газфлот»), в результате которого открыты месторождения Каменномысское- море, Северо-Каменномысское, Обское и Чугорьяхинское. С 2002г. для бурения глубоких скважин впервые была использована мелкосидящая СПБУ «Амазон». Для обеспечения высокой скорости бурения, что чрезвычайно важно в условиях короткого летнего периода, экологической и промышленной безопасности, при бурении применялись следующие передовые технологи:

- ГП-ИБР, обеспечивающие стабильность и расход химреагентов;

- эффективный породоразрушающий инструмент;

- КОС, бурголовки, фибергласовые внутренние трубы;

- оптимальные КНБК, включающие СУБТ, амортизаторы, буровые трубы «Хеви-вейт», утолщенные буровые трубы (предотвращение вибрации и знакопеременных нагрузок на бурильный инструмент и буровое оборудование);

-гидроизлучатели (кольматация стенок скважины и релаксация напряжений);

- гидравлические наддолотные расширители для предотвращения затяжек при подъеме бурильного инструмента после скоростного бурения в глинистых породах.

В результате совершенствования техники и технологии бурения удалось повысить механическую, рейсовую и коммерческую скорость бурения скважин. Широкое использование получили новые типы бурголовок и керноотборного снаряда с привязкой и адаптацией к арктическим условиям, которые позволили ускорить работы по отбору керна и довести его вынос практически до 100%. На некоторых скважинах объем бурения долотами РДС составил около 70%.

При подготовке к бурению поисковых скважин учитывалось, что сеноманский горизонт сложен рыхлыми песками, отбор керна в этих отложениях – очень сложная задача. Чтобы исключить потерю керна во время подъема бурильной колонны, применялись системы полного перекрытия внутренней керноприемной трубы СППВТ (Full Closure System – FCS). В результате впервые в сеноманских отложениях отобран керн со 100%-ным выносом.

4.4. Геофизические исследования скважин

Исследования проводились в основном аппаратурой компании Halliburton. Применяемый комплекс включал регистрацию кривых собственной поляризации (SP), удельного электрического сопротивления зондовыми установками бокового (DLL, DFL, MSFL) и индукционного (HRI) каротажа, естественной радиоактивности в интегральном (GK) и спектральном (CSNG) вариантах, вызванной нейтронной активности (DSN), объемной и минеральной плотности (SDC) скоростных и энергетических характеристик (BCS). Состояние ствола скважины, углы и азимуты пересечения слоев разреза контролировали профиле- и наклонометрией (SED).

Материалы ГИС соответствуют современным методическим и метрологическим требованиям и позволяют уверено проводить литологическое расчленение разреза, выделять коллекторы и оценивать их насыщенность.

Анализ эффективности комплекса ГИС

Геофизические исследования скважин на шельфе Баренцево-Карского региона имеют целью уточнение геологической модели залежей УВ, оценку подсчетных параметров продуктивных горизонтов и повышение категорийности запасов нефти, газа и газоконденсата.

Эффективность модели ГИС в поисково-разведочных скважинах определяется, как известно, оптимальностью применяемого комплекса, претерпевшего существенные изменения за период с 1998 года по сегодняшний день, прежде всего за счет привлечения современных методов и аппаратуры. Оптимально подобранный с участием диссертанта комплекс включает разноглубинные электрические, электромагнитные, ядерные и др. виды исследования, в том числе методы определения пористости и вещественного состава. Скважинные геофизические исследования проводились преимущественно аппаратурой компании Halliburton, в скважине №7 Штокмановского месторождения использована аппаратура компании Schlumberger, в скважине №5 Каменномысское-море месторождения исследования выполнены аппаратурой ООО «Тверьгеофизика».

Регистрация показаний основного комплекса ГИС проводилась сборками приборов, что позволило достичь согласованности различных методов по глубине.

В целом выполненный комплекс исследований и технология его проведения обеспечивают уверенное литологическое расчленение разреза, выделение коллекторов, оценку их насыщенности и определение петрофизических параметров (эффективных нефтегазонасыщенных толщин, коэффициентов пористости, проницаемости, глинистости, нефтегазонасыщенности).

При бурении скважины №7 Штокмановского месторождения проводились геофизические исследования в процессе бурения (LWD). Комплекс ГИС осуществлялся аппаратурой «INTEQ» фирмы Baker Hughes. Выполнялся комплекс методов, включающий двойной боковой каротаж (ДБК) на основе использования источников высокочастотного и низкочастотного сигналов (Multiple Propagation Resistivity – MPRтм), гамма-каротаж (ГК), нейтронный каротаж (ННК), гамма-гамма каротаж (ГГКп), запись диаметра скважины акустическим каверномером (CALCX), инклинометрию. Наличие таких материалов позволило осуществлять оперативную (во время бурения) корреляцию разреза и корректировку интервалов отбора керна в юрских отложениях.

Достоверность результатов ГИС подтверждена испытаниями в подавляющем большинстве скважин из интервалов, оцененных по ГИС как продуктивные и рекомендованных к испытанию, получены притоки углеводородов. Некоторое снижение эффективности ГИС отмечается в интервалах залегания нижнемеловых отложений месторождений акватории Обской губы, что связано с недоизученностью разреза (отсутствие достоверных данных о минерализации пластовой воды в пластах ТП и недостаточная охарактеризованность керном пластов БЯ).

4.5. Особенности испытаний морских скважин

Специфика испытаний морских скважин связана с необходимостью выполнения работ в крайне сжатые сроки при соблюдении современных технологий и экологических требований. Процесс испытаний является составной и чрезвычайно важной частью всего технологического комплекса освоения морских скважин.

При проведении геологоразведочных работ на рассматриваемых акваториях в период с 1998 по 2008 г.г. при непосредственном участии и руководстве диссертанта была разработана и внедрена схема инструментального обеспечения испытаний, заканчивания и вторичного вскрытия продуктивных объектов в скважинах морского бурения. При испытании пластов было принято решение использовать полнопроходный пластоиспытатель DST(Drill Steam Test Tools), спускаемый в зависимости от решаемых технологических задач на бурильных или на насосно- компрессорных трубах (НКТ).

Современная технология проведения испытания морских скважин требует, чтобы все операции (вскрытие, освоение и испытание продуктивного объекта в комплексе с методами интенсификации притока) проводились за один спуск инструмента. При этом вторичное вскрытие (перфорация) осуществляется при одновременном создании депрессии на пласт. Указанные особенности позволяют повысить эффективность проводимых работ за счет сокращения числа спусков пластоиспытателя, повышения уровня информативности и обеспечения контроля за процессом испытания скважины, что значительно ускоряет процесс оценки отдельных параметров пластов и запасов углеводородов месторождения в целом.

Совместно с пластоиспытательным оборудованием фирмы «Halliburton» ООО “Газфлот” успешно применял трубные перфораторы ПМТ- 89 и ПКТ - 105 с повышенной пробивной способностью, разработанные и выпускаемые ОАО “ВНИПИвзрывгеофизика”.

По результатам геологоразведочных работ, проведенных в 2000 – 2007 годах на акваториях Обской и Тазовской губ, а также ранее в Печорском море, можно сделать следующие выводы:

- применение новой техники и технологии вторичного вскрытия продуктивных объектов, освоения и испытания морских разведочных скважин в комплексе со всем видами ГГР позволило получить промышленные притоки газа и открыть новые крупные месторождения углеводородов на арктическом шельфе РФ.

- разработанная и внедренная отечественная прострелочно – взрывная аппаратура с зарядами повышенной пробивной способности дает значительное повышение эффективности вторичного вскрытия продуктивных пластов и не уступает по своим характеристикам лучшим зарубежным аналогам.

4.6. Новые технологии некоторых петрофизических исследований неконсолидированных пород

Основную трудность керновых исследований в изучаемом регионе представляет отбор и сохранение свойств керна из неконсолидированных отложений сеномана. При разработке программы петрофизических исследований в продуктивных интервалах сеномана была привлечена методика керноотбора фирмы «Security DBS» снарядами фирмы «Security DBS» с одноразовыми керноприемными трубами, что позволяет провести спектральный и плотностной гамма-каротаж по всем колонкам отобранного керна, оценить его параметры и надежность, привязать к разрезу.

Отобранный керн всесторонне изучали в лаборатории современными методами. Впервые реализована передовая низкотемпературная технология исследования неконсолидированного керна (В.Г. Топорков и др.) включающая:

- «жесткую» привязку колонки керна к разрезу на основе сопоставления кривой гамма-каротажа с кривой гамма-активности, полученной путем «каротажа» по колонке керна;

- цветное фотографирование при дневном и ультрафиолетовым освещении отшлифованной поверхности вдоль разрезанной колонки керна;

- растровую электронную микроскопию и рентгеноструктурный анализ;

- определение проницаемости по всей колонке керна;

- ЯМР исследования в сильном искусственном магнитном поле;

- полный комплекс петрофизических исследований на стандартных замороженных в жидком азоте образцах (цилиндрах).

Применение низкотемпературной технологии при работе с рыхлым керном дало возможность впервые для сеноманских отложений получить достоверные характеристики по ФЕС пластов и вмещающих пород, проследить все фазы формирования коллекторов вскрытого разреза сеномана для построения адекватных геологических моделей открытых залежей углеводородов. Для определения характера насыщения разреза, распределения углеводородов в породе, оценки трещиноватости в карбонатных коллекторах, процессов преобразования пород продуктивной толщи на стадии катагенеза использовались цветные цифровые изображения в белом и ультрафиолетовом цвете. Компьютерная обработка изображений позволила получить количественную характеристику емкости каверн и трещин, дать оценку доли водонасыщенных пород в общем объеме продуктивного коллектора и ряд других характеристик.

Использование метода ядерно-магнитного резонанса в сильном магнитном поле позволило существенно расширить круг решаемых задач, получаемых на керновом материале, особенно при определении эффективной пористости и остаточной водонасыщенности коллекторов продуктивной толщи.

4.6.1. Оценка фильтрационно-емкостных свойств неконсолидированных пород сеномана методом ЯМР

Высокая пористость в сочетании с высокой остаточной газонасыщенносью в прискважинной зоне в разрезе сеномана оказывают крайне негативное влияние практически на все методы каротажа, снижая их достоверность. Это влечет за собой ошибки в оценке продуктивных интервалов, часто всю толщу в таком разрезе относят к продуктивной.

Пористость вмещающих пород и продуктивных сеноманских пластов практически одинаковая и лежит в пределах 25 – 45%. Проницаемость вмещающих пород по газу на сухих образцах от 0,1 мД – 1Д; продуктивных разностей 0,10 – 1Д.



Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.