авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 || 4 | 5 |   ...   | 7 |

Геолого-геофизические исследования и модели природных резервуаров баренцево-карского региона с целью наращивания ресурсной базы углеводородов

-- [ Страница 3 ] --

К ним относятся в палеозойских отложениях верхнедевонско-каменноугольная и пермская НГМТ, представленные кремнисто-глинистыми битуминозными аргиллитами, содержащими ОВ преимущественно сапропелевого типа. На большей части изучаемой территории эти толщи исчерпали свой генерационный потенциал. Степень преобразования пермских отложений по периферии шельфа соответствует заключительной фазе главной зоны нефтегенерации (градация катагенеза МК3 - Адмиралтейская площадь), что позволяет предполагать возможность генерации УВ на приподнятых участках периферии Баренцевоморского шельфа.

В Карском регионе палеозойские отложения практически не изучены. Они вскрыты на Ямале и их условно можно отнести к нефтематеринским. Степень их преобразования не позволяет относить их к разряду нефте- и газопроизводящих.

В мезозойских отложениях установлены нефтегагазоматеринские толщи в средне- и верхнетриасовых, нижне-среднеюрских отложениях, представленные прослоями глинистых пород, обладающих хорошими и умеренными нефтематеринскими свойствами. На большей части Баренцевого региона они находятся в ГЗН и способны генерировать как жидкие, так и газообразные УВ, причем в северном направлении предполагается увеличение доли жидких компонентов в силу улучшения качества нефтематеринских толщ. О нефтегазогенерационных способностях триасовых отложений Карского региона данных практически нет. Область распространения их отложений ограничена и приурочена к наиболее прогнутым частям Ямальской палеорифтовой зоны.

В Карском регионе степень преобразования нижне-среднеюрских НГМТ весьма неравномерна. Так, в районе Харасавэйского месторождения степень катагенеза нижне-среднеюрских отложений соответствует главной зоне газогенерации. На Бованенковском месторожении эти отложения находятся в ГЗН.

Верхнеюрские отложения являются основной нефтематеринской толщей в Баренцево-Карском регионе. В Баренцевом море они выделяются как «волжские черные глины», которые являются аналогом баженовской свиты. На большей части Баренцева моря по расчетным данным они не достигли ГЗН или находятся на начальных ее стадиях. Большая степень преобразования отмечается только в Южно-Баренцевской впадине, где они возможно находятся в ГЗН. В Карском регионе верхнеюрские НМТ находятся в ГЗН.

Нижнемеловые и альб-сеноманские НГМТ в Карском регионе содержат большое количество ОВ гумусовой природы в рассеянной и концентрированной форме, что, несмотря на незначительную катагенетическую зрелость (ПК1-ПК3), способствует генерации больших количеств газовых компонентов, которые концентрируются в основном в сеноманских ловушках.

Таким образом, в Баренцево-Карском регионе выявлены нефтегазоматеринские толщи в верхнедевонско-каменноугольных и пермских отложениях палеозойской части разреза и в средне-верхнетриасовых, нижнее-среднеюрских, верхнеюрских и меловых отложениях в мезозойском интервале разреза.

Глава 3. Модели природных резервуаров в продуктивных толщах осадочных бассейнов Баренцево-Карского региона

3.1. Принципы моделирования геологических систем

Современная нефтегазовая геология и геофизика располагает все большим и постоянно растущим числом источников информации. К ним относится накопленные за десятилетия общегеологические представления, позволяющие широко использовать метод аналогий в априорных построениях крупно- и мелкомасштабных геологических моделях участков земной коры; результаты аэрокосмических исследований; данные геодинамики и геотектоники; обширный комплекс полевых и скважинных геофизических и геохимических методов разведки; петрофизические и геохимические исследования образцов керна, шлама и пластовых флюидов. Однако при современном состоянии геологии, геофизики и геохимии все же около 30% скважин оказываются неудачными и ликвидируются по геологическим причинам. Этому в значительной мере способствует совершенно различная плотность и равномерность геолого-геофизической информации в отдельных регионах или даже в пределах одной площади. Например, в морских скважинах с ограниченным разведочным бурением, как правило, недостаточен объем петрофизической и геохимической информации, да и просто мало скважин для детального изучения продуктивной толщи. Поэтому на разведочном этапе важнейшим моментом является оценка степени информативности имеющихся геофизических данных, представительности каменного материала, комплекса ГИС. Это требует привлечения математического аппарата и компьютерных технологий, т.е. математического моделирования как объекта изучения, так и процессов, протекающих в недрах.

Математическому моделированию должно предшествовать моделирование геолого-геофизическое, базирующееся на возможно более детальных представлениях о геологическом строении изучаемого участка земной коры и свойствах слагающей его толщи пород.

В настоящее время существует большое количество компьютерных технологий геологического моделирования нефтегазовых месторождений, включающих геометризацию залежей, оценку подсчетных параметров по скважинам, подсчет запасов УВ. В условиях шельфа реальное их применение наталкивается на серьезные трудности, связанные с крайне ограниченным числом разведочных скважин и, соответственно, низкой представительностью каменного материала.

В связи с вышесказанным, оценочные параметры приходится брать по аналогии с другими месторождениями (структурами), чаще всего на сопредельной суше. Такой подход требует максимально возможную достоверность и детальность построения геологической модели. Главным источником информации для этого на поисково-разведочном этапе является сейсморазведка. Современные методы обработки сейсморазведочных данных позволяют не только установить структурные особенности резервуара, но и в ряде случаев судить о фильтрационно-емкостных свойствах коллекторов.

3.2. Геолого-геофизические модели Западно-Сибирской плиты и ее обрамления

3.2.1. Гравитационная и геомагнитная модели

О плотности глубинных слоев Западно-Сибирской плиты можно судить лишь косвенно, главным образом по эмпирическим зависимостям скорости продольных волн от плотности.

По имеющимся на сегодня данным, складчатые и метаморфизованные породы палеозоя, сложенные как терригенными, так и эффузивно-осадочными разностями, характеризуются значительным диапазоном плотности – от 2,45 до 2,75 г/см3. Наибольшее ее значение (в среднем 2,75 г/см3) приходятся на породы нижнего палеозоя и докембрия, представленные гнейсами, гранитами, кремнистыми сланцами, образующими собственно кристаллическое основание (фундамент?) плиты.

Разрез мезо-кайнозоя, сложенный осадочными породами мощностью до 4-5 км (на севере - до 10 км), характеризуется невысокой плотностью, более или менее закономерно увеличивающейся с глубиной, а также, по параллели, от краевых частей к центру

В целом, в области положительного гравитационного поля в средней части исследуемого региона отмечается наличие крупных отрицательных аномалий, которым соответствуют аналогичные по знаку магнитные. Судя по интенсивности (до -5 мГл) сопредельных гравитационных минимумов и расчетной плотности пород фундамента (порядка 2.58-2.62 г/см3) последние сложены кислыми породами. Основные элементы гравитационного поля хорошо отражают строение региона. Так, конфигурация изоаномал указывает на раздельность Хамбатейского и Северо-Каменномысского месторождений, и в то же время, на возможную связь последнего с Чугорьяхинским.

В области Каменномысского и Нулмуяхинского месторождений резкий подъем фундамента с 6 км до 4.5 км и далее к западу до 3.3 км точно соответствует четко выраженной аномальной зоне, в пределах которой характер гравитационного поля существенно отличается от соседних участков. Это градиентная зона типа гравитационной ступени, в пределах которой значения поля уменьшаются с +7 до -25 мГал с востока на запад, т.е., воздымание фундамента сопровождается увеличением силы тяжести.

Магнитное поле в целом представляет сложную картину. Можно лишь констатировать тяготение аномалий к формированию вытянутых форм с преобладанием юго-восточного и юго-западного простираний. Достаточно четко проявляется связь аномалий магнитного поля с месторождениями УВ. Газовые месторождения (например, Уренгойское) закономерно отражаются аномалиями пониженных значений Та.

Таким образом, глубинные структуры и петромагнитные неоднородности фундамента отражают локализацию месторождений в осадочном чехле, свидетельствуя о возможном сквозном и глубинном характере процессов формирования месторождений УВ в Западно-Сибирской нефтегазоносной провинции в целом и в пределах Обско-Тазовского мелководья в частности.

3.2.2. Сейсмогеологические модели резервуаров нефти и газа
Баренцево-Карского региона

В условиях ограниченного бурения и сильной литологической латеральной и вертикальной неоднородности геологического разреза создание сейсмогеологической модели резервуара может решаться весьма неоднозначно.

Устранение неоднозначности на этапе прогнозирования разреза (ПГР) обычно выполняется с привлечением сейсмических данных, по которым строится детальная сейсмогеологическая модель разреза, увязанная с литологической и петрофизической характеристиками пород, слагающих разрез и полученных по данным ГИС. Конечным результатом ПГР является построение модели среды, основанной на преобразовании материалов ОГТ в разрезы акустической жесткости и переходе с помощью корреляционных соотношений к оценкам петрофизических параметров, - пористости, песчанистости и др. Наблюдаемые аномалии волнового поля типа «белое пятно» позволяют судить о характере насыщения пород-коллекторов.

Спецификой сеноманских газонасыщенных отложений является крайне низкая коррелируемость разрезов по данным ГИС и сейсморазведки, даже в пределах одного месторождения. Это связано, прежде всего, с неустойчивостью и низкой протяженностью отражающих сейсмических горизонтов из-за крайне сложного характера залегания сейсмофаций, вплоть до их линзовидности, резкого изменения коэффициента песчанистости, различной ориентации аллювиальных и аллювиально-дельтовых систем. Изометричные зоны низких значений коэффициента песчанистости установлены в сводовых частях антиклинальных структур, на глубинах 0-50 м в кровле сеномана.

В то же время резкое снижение акустического импеданса в газонасыщенных разностях, приводящее к формированию высокоамплитудных отраженных волн, позволяет достаточно уверенно картировать границы газонасыщенных резервуаров.

Вариации толщин газоносных пластов отражаются на морфологии сейсмических горизонтов. Наиболее сильно эффект временных задержек проявляется на уровне ГВК, но он прослеживается и на более низких отметках. Временной интервал между кровлей сеномана (горизонт Г) и кровлей верхней юры (горизонт Б) составляет около 1500 мс. Чем ближе к горизонту Г, тем сильнее проявляются временные задержки.

Литологические вариации, наличие плотных прослоев, тектонические нарушения и трещиноватость, структурные неоднородности, - все эти факторы, влияющие на динамику сейсмической записи, крайне трудно поддаются фильтрации. Этому способствует и резкое изменение толщины газонасыщенных интервалов от свода структуры к ее приконтурной части, что осложняет интерпретацию интервальных амплитуд.

Из всех рассмотренных эффектов основным остается влияние газовой залежи, имеющей достаточную амплитуду и размеры.

Прогноз эффективных газонасыщенных толщин сеномана пытались осуществить по данным сейсморазведки на Северо-Каменномысском и Каменномысском-море месторождениях после бурения здесь первых поисковых скважин. На Обской и Чугорьяхинской площадях такая попытка была сделана до начала буровых работ.

3.3. Литофизические модели

Количественная литофизическая (петрофизическая) модель представляет собой определенную концепцию, построенную на основании аналитических исследований и записанную в математической или графической форме.

В петрофизической практике понятие «модель» чаще всего ассоциируется с набором линейных, нелинейных и дискриминантных уравнений, описывающих эмпирические многомерные связи между петрофизическими параметрами определенного объекта (породы, коллектора, флюидоупора). Для изучения сложных коллекторов, к которым относится большинство нефтегазосодержащих образований, разработан ряд программ, позволяющих:

- установить кондиционные значения пористости, проницаемости, глинистости для коллектора;

- исследовать смещение границы «коллектор-неколлектор» в зависимости от литологического фактора (например, вида и содержания цементирующего или дисперсного глинисто-карбонатного материала);

- найти граничные значения открытой пористости и текущей водонасыщенности для получения безводного или обводненного притока нефти или газа из изучаемого интервала разреза скважины;

- построить рабочие двумерные корреляционные связи между фильтрационно-емкостными свойствами коллектора (ФЕС), необходимые для комплексной интерпретации материалов ГИС;

- построить такие же связи ФЕС с геофизическими параметрами, характеризующими продуктивные или водонасыщенные объекты разведки и разработки.

3.3.1. Петрофизические модели терригенных коллекторов

Примером использования вышеописанного подхода в практических целях может служить модель глинистой породы, предложенная Б.Ю.Вендельштейном и В.В.Поспеловым (1977) для построения расчетных зависимостей емкости катионного обмена qп и диффузионно-адсорбционной активности Ада порового и трещинного коллекторов от характеристик его дисперсности (глинистости), коллекторских свойств и содержания остаточной воды в коллекторе. Модель «глины», заполняющей частично поровое пространство «скелета» породы, представлена укладкой частиц кубической формы одинакового размера а, образующих три взаимно перпендикулярных системы щелевидных каналов.

Очевидно, что любая претендующая на полноту модель должна содержать элементы, отражающие условия формирования, характер и интенсивность вторичных изменений объекта. Роль литологического фактора при петрофизическом моделировании сложных коллекторов, в том числе полимиктовых и карбонатных отложений Западной Сибири, трудно переоценить. Так, опыт петрофизических исследований полимиктовых песчано-глинистых коллекторов мелового возраста арктического шельфа РФ показал, что дисперсия их электрических параметров связана со структурно-литологической неоднородностью и стадией вторичных (диа- и катагенетических) преобразований первичного осадка.

Многообразие существующих в геолого-геофизической практике петрофизических моделей объясняется, прежде всего, различными механизмами формирования тех или иных физических (физико-химических) свойств горных пород, в том числе нефтегазовых коллекторов. Это обстоятельство, вместе с литофациальными особенностями исследований исключают возможность построения универсальной петрофизической модели.

Поэтому принято строить модели, описывающие те или иные сравнительно однородные по физической и генетической природе свойства породы.

Е.Г. Бро (1993) для севера Западно-Сибирской плиты предложил 7 моделей, описывающих плотность, и 8 моделей, описывающих пористость.

Модель электропроводности

В течение ряда лет автор настоящей работы проводил исследования электропроводности и поверхностной проводимости полимиктовых коллекторов нефти и газа юрского возраста севера Западной Сибири. Модель электропроводности глинистых терригенных пород была предложена Б.Ю. Вендельштейном в 1960 г., а затем усовершенствована М.М. Элланским и Б.Н. Еникеевым.

С целью проверки этой модели и уточнения существующей базы интерпретации данных скважинной электрометрии автором были выполнены лабораторные исследования электропроводности образцов из терригенных отложений тюменской свиты и нижнего мела Надымского и Песцового месторождений Западной Сибири.

Полученные экспериментальные зависимости убедительно подтвердили теоретические воззрения на характер зависимости параметра пористости от минерализации насыщающего раствора. По нашим данным, область концентрации, в которой сопротивления насыщающего и связанного растворов слабо отличаются друг от друга, находится в пределах 0,1 – 0,8 н. Именно при концентрации 0,8 н наблюдается на графиках резкий подъем, а при насыщении образцов растворами более низкой концентрации величина параметра пористости практически не изменяется.

Таким образом, в величину параметра Рп пористости для коллекторов с минерализациями насыщающих пластовых вод 0,1 – 0,8 н поправку на влияние поверхностной проводимости вводить не следует.

В соответствии с изложенным при проведении дальнейших экспериментальных исследований в лаборатории образцы насыщались раствором электролита NaCl с концентрацией 0,1 н, при которой исключается влияние эффекта поверхностной проводимости. Все измерения проводились в атмосферных условиях.

Известно, что величина Рп зависит от структурно-литологической характеристики пород, определяемой возрастом отложений, минералогическим составом пород, степенью вторичных преобразований неустойчивых компонентов. Определение коэффициента пористости в коллекторах полимиктового состава следует проводить по статистической зависимости Рп = f(Kп), построенной с учетом минерального состава глинистого материала для отложений определенного типа.

Сопоставление зависимостей Рп = f(Kп), построенных для указанных отложений, показало, что линия регрессии зависимости, соответствующая коллекторам тюменской свиты, расположена выше, т.е. для образцов с одинаковыми значениями коэффициента пористости величина параметра пористости с глубиной растет, хотя и незначительно. Повышение Рп с глубиной связано с процессом катагенеза, в результате которого геометрия порового пространства пород тюменской свиты по данным растровой электронной микроскопии стала более сложной, а следовательно, увеличилась и электрическая извилистость поровых каналов.

Модель удельной поверхности

Петрофизические модели тонкодисперсных терригенных пород были бы неполными без учета одной из принципиально важных характеристик коллектора – удельной поверхности, наряду со структурными параметрами определяющей физико-химические, электрические, радиоактивные и др. свойства этих образований.

Величина удельной поверхности Sо – суммарная поверхность частиц породы или пустотного пространства в единице объема или массы породы - зависит от размеров, формы и минерального состава слагающих ее частиц. Измерив этот параметр, можно по ее корреляционным связям с другими петрофизическими характеристиками оценить их величины.



Pages:     | 1 | 2 || 4 | 5 |   ...   | 7 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.