авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 |

Количественная характеристика и петрогенетическая интерпретация структуры гранитов салминского массива (карелия)

-- [ Страница 2 ] --

На диаграмме в координатах 2 - Скорр (рис. 2) нанесены фигуративные точки изученных образцов и, в соответствии с их положением, намечены поля гранитов А, Б и В. Кроме показателей агрегативности, определялись некоторые гранулометрические параметры: средний размер зерен, вариация размера зерен (отношение стандартного отклонения к среднему размеру) и асимметрия распределения зерен по размеру (табл.1).

Граниты субщелочно-лейкогранитовой формации (граниты В), отличаются низкими значениями статистики 2 (от 300 до 500), что соответствует случайному или даже регулярному распределению кварца. Это позволяет отделить поле гранитов В от других полей на диаграмме вертикальной границей, соответствующей границе случайного и кластерного распределения (2 = 448). Значения Скорр варьируют в пределах 1,5 – 4,5, в зависимости от того, преобладают в структуре одиночные зерна гороховидного кварца или группы из 3-5 зерен.

Породы гранитовой формации (граниты А) и лейкогранит-аляскитовой формации (граниты Б) характеризуются кластерным распределением кварца (2>450), но строение самих кластеров различно. В гранитах Б кластеры (цепочки или гнезда) состоят из одноразмерных зерен кварца, непосредственно контактирующих друг с другом, тогда как в гранитах А кварц представлен двумя генерациями: темным кварцем порфировых вкрапленников и мелко-среднезернистым кварцем основной массы. Измеренные вместе, эти две генерации показывают высокие («кластерные») значения 2, в то время как взятые отдельно порфировые вкрапленники кварца показывают случайное распределение (точка 4 на рис. 2). Соответственно, при близких значениях 2 корреляция между размерами зерен и расстоянием до ближайших соседей будет выше в гранитах Б, что и позволяет провести границу между ними и гранитами А горизонтально, по значению Скорр = 5,0.

Установленные границы на диаграмме являются приблизительными, поскольку поля гранитов А, Б и В частично перекрываются. В особенности это касается гранитов А, которые чаще других подвержены перекристаллизации и метасоматическим изменениям. Примером могут служить частично перекристаллизованные граниты Северного массива, по значению Скорр попадающие в поле гранитов Б (точки 5 и 6 на рис. 2).

Таблица 1. Параметры структуры типичных гранитов А, Б, В

Тип гранита Граниты А Граниты Б Граниты В
Фаза I II I II I II
Массив на рис. 2 1 2 7 9 11 14
Число зерен, n 168 643 305 925 284 417
2 1354 453 594 738 351 496
Cкорр 3,1 4,8 5,2 8,8 4,2 1,9
Lcp, мм 3,36 1,28 2,36 1,57 2,90 1,15
VL 0,43 0,41 0,35 0,35 0,38 0,29
A 0,74 1,41 0,96 1,09 0,39 1,11

Примечание: Lcp – средний размер зерен, VL – вариация размеров зерен, А – асимметрия распределения; фаза: I – главная; II – дополнительная.

Для гранитов всех формаций отмечено уменьшение зернистости пород от главной фазы (3-4 мм) к породам дополнительных фаз (1-2 мм и менее). Степень неравнозернистости, выраженная параметром VL, несколько выше для гранитов типа А. Распределение зерен кварца по размеру во всех гранитах левоасимметричное (показатель асимметрии А>0), варьирующее от логнормального в гранитах А до близкого к нормальному в гранитах В. В гранитах А гранулометрические кривые для кварца, как правило (не всегда), отличаются более вытянутой правой ветвью, за счет небольшого количества порфировых вкрапленников среди более мелкого кварца, что подтверждается и предыдущими исследованиями (Гульбин, 2004).

2. Основные разновидности гранитов Салминского массива по своим структурным характеристикам отвечают: граниты рапакиви (питерлиты) с овоидно-порфировидной структурой гранитам А, биотитовые лейкограниты с цепочечно-агрегативным кварцем гранитам Б, микроклин-альбитовые лейкограниты c гороховидным кварцем гранитам В.

Граниты раннего комплекса Салминского массива представлены питерлитами – разновидностью гранитов рапакиви, в которой овоиды калиевого полевого шпата, как правило, лишены олигоклазовой оболочки, зато часто содержат гранофировые вростки кварца в краевой части. Среди питерлитов в свою очередь выделяются как минимум две фазы (крупнозернистого и среднезернистого сложения), а также приконтактовая фация с мелкозернистой основной массой и жильная фаза (аплит). По направлению к контактам с более поздними фазами гранитов постепенно меняется состав питерлитов (увеличивается количество кварца и, особенно, калиевого полевого шпата), а их структура постепенно приближается к равнозернистой. Такие измененные разновидности можно определить как вторичные аляскиты.

Следующий по возрасту комплекс представлен равнозернистыми биотитовыми лейкогранитами. В этих породах кварц образует разветвленные цепочки и гнезда вокруг сростков калиевого полевого шпата и кислого плагиоклаза. При изучении лейкогранитов в шлифах, а также методом катодолюминесцентной микроскопии, в них отмечена обширная альбитизация.

Самыми молодыми магматическими образованиями Салминского массива являются микроклин-альбитовые граниты. Среди них можно выделить порфировидную и равнозернистую разновидности, причем в последней присутствуют циннвальдит и топаз, а также метасоматический альбит (как и в биотитовых лейкогранитах). Крупнозернистый кварц во всех микроклин-альбитовых гранитах имеет характерную «гороховидную» форму.

Для всех образцов гранитов были проведены измерения извилистости границ зерен кварца, пространственного распределения крупнозернистого (либо порфировидного) кварца (по полированным образцам), распределения минералов в основной массе породы (по большим петрографическим шлифам). Кроме описанных выше статистических методов, для контроля их результатов применялось определение коэффициента агрегативности КА на минералогическом интеграционном устройстве МИУ-5М (в шлифах). В отличие от методов ближайшего соседа или случайной точки, в МИУ-5М расчет величины КА основан не на измерении координат центров зерен одного и того же минерала, а на подсчете частоты контактов между ними. КА = 0,5 и менее означает, что минеральные индивиды какой-то пары минералов или одного минерала, например, калиевого полевого шпата, практически не образуют общих границ или субагрегатов. КА 1 имеют те пары минералов, зерна которых дают популяции (или участки гломерозернистой структуры).

Для характеристики формы зерен применялось измерение фрактальной размерности контуров межзеренных границ. По определению, фракталами называют геометрические объекты, размерность которых строго отличается от топологической и принимает дробное значение. Фрактальная размерность является величиной, которая характеризует форму поверхности объекта: для одномерных кривых на плоскости она изменяется от 1 (гладкие евклидовые линии) до 2 (бесконечно извилистые кривые, заполняющие плоскость), выступая мерой извилистости или сложности изучаемого контура (Гульбин, 2004). Измерения фрактальной размерности проводились методом корреляционной функции в программе FractShop 1.0 (разработана на кафедре МКП СПГГИ). Подобная методика ранее успешно применялась автором для характеристики структуры колчеданных руд и прогноза их поведения при дроблении (Петров, Гульбин, 2005). В настоящей работе измерялась форма зерен кварца в граните с различным разрешением измерений (от 30 до 250 мкм), что позволило различать тонкую и грубую извилистость границ.

Измерения извилистости границ кварцевых зерен показали низкие значения фрактальной размерности на уровне разрешения до 50 мкм (около 1,01±0,005), то есть гладкие границы. В диапазоне разрешений 50-250 мкм фрактальная размерность ведет себя неодинаково для разных образцов. Фрактальная размерность увеличивается (от 1,10-1,12 до 1,13-1,14) при переходе от тонкой извилистости к грубой извилистости (то есть от разрешения 50 мкм к разрешению 250 мкм) в образцах, где так или иначе проявлена неравномернозернистая структура: крупнозернистый и среднезернистый питерлит, приконтактовая фация питерлитов, порфировидный микроклин-альбитовый гранит. Напротив, убывание (от 1,10 до 1,06-1,08) или сохранение на прежнем уровне фрактальной размерности характерно для равнозернистых гранитов, с более высокой степенью агрегативности кварца. Более низкие абсолютные значения фрактальной размерности (менее 1,10) отмечены для образцов со следами перекристаллизации, при которой границы зерен «сгладились». Прежде всего, это относится к измененным питерлитам и лейкогранитам второго комплекса. Предположение о перекристаллизации подтверждается наличием в зернах микроклина этих гранитов укрупненных пертитов и даже идиоморфных мелких зерен плагиоклаза.

По значениям структурных параметров 2 и Скорр породы Салминского массива распределяются следующим образом (рис. 3): в поле гранитов А – крупнозернистый и среднезернистый питерлит, а также более ранний гранит-порфир; в поле гранитов Б –биотитовый лейкогранит и вторичный аляскит по питерлитам; в поле гранитов В – микроклин-альбитовые граниты (как порфировидный, так и равнозернистый).

Изучение породообразующих минералов в основной массе порфировидных гранитов (как с помощью метода случайной точки, так и на приборе МИУ-5М) показало преимущественно случайное распределение зерен кварца, калиевого полевого шпата, плагиоклаза и низкую степень их агрегативности (КА = 0,2-0,6). Высокое значение коэффициента агрегативности (равное или больше единицы) характерно только для кварца и биотита в равнозернистых лейкогранитах, а также для слюды в равнозернистых микроклин-альбитовых гранитах (табл. 2).

Как показали детальные петрографические наблюдения, «безоболочные» овоиды в питерлитах на самом деле обладают оболочкой, только не олигоклазовой (как в «стандартных» рапакиви), а микроклиновой с гранофировыми вростками кварца, причем эта структура является устойчивой независимо от зернистости основной массы и сохраняется даже в измененных разностях. Количество и форма выделения кварца в этой зоне, а также высокое содержания натрия в щелочном полевом шпате (по данным микрозондового анализа), заставляют предполагать относительно быструю кристаллизацию из расплава, близкого к кварц-полевошпатовой эвтектике. Контрастное строение и состав центральной и краевой частей овоидов в питерлитах указывает на существенные отличия условий формирования этих частей. Крупные кристаллы низкоупорядоченного микроклина (центральная часть овоидов) могли кристаллизоваться при относительно высокой температуре на больших глубинах по сравнению с гранофировой оболочкой и основной массой породы.

Таблица 2. Коэффициенты агрегативности КА для мономинеральных пар гранитов Салминского массива.

Порода Коэффициент агрегативности КА
Pl-Pl Qtz-Qtz KFsp-KFsp Bt-Bt
Среднезернистый питерлит 0,5 0,6 0,2 0,2
Аплит 0,5 0,6 0,5 0,7
Биотитовый лейкогранит 0,5 1,0 0,4 1,7
Порфировидный микроклин-альбитовый гранит 0,4 0,3 0,5 0,9
Равнозернистый микроклин-альбитовый гранит 0,6 0,8 0,4 1,2

Примечание: Pl – плагиоклаз, Qtz – кварц, KFsp – калиевый полевой шпат, Bt – биотит (в микроклин-альбитовых гранитах - циннвальдит). Величины КА для порфировых вкрапленников в таблицу не включены.

3. Граниты раннего комплекса Салминского массива вблизи контакта с более молодыми биотитовыми лейкогранитами подверглись значительным постмагматическим изменениям (кремне-калиевому метасоматозу), которые выразились в образовании цепочечных агрегатов кварца, выравнивании зерен по размеру, сглаживании межзеренных границ и приближении их структуры к структуре гранитов Б. Образовавшиеся вторичные аляскиты отличаются от лейкогранитов Б меньшей степенью агрегативности породообразующих минералов и реликтами структуры гранитов рапакиви.

Вторичные аляскиты (аляскитизированные граниты рапакиви) распространены преимущественно в северо-западной части Салминского массива, вблизи контакта раннего комплекса гранитов рапакиви (питерлитов) с более поздними лейкогранитами. Макроскопически порода отличается от неизмененных питерлитов тем, что основная масса в ней уже не разнозернистая (от крупно- до мелкозернистой), а сплошь крупнозернистая с изометричными зернами кварца и относительно идиоморфным калиевым полевым шпатом. По сравнению с неизмененными питерлитами (как средне-, так и крупнозернистыми), содержание плагиоклаза снижается с 18-25% до 10-12%, калиевого полевого шпата – возрастает с 33-40% до 42-43%, кварца – с 36% до 43%. Переход неизмененных питерлитов во вторичные аляскиты плавный, однако в крупных образцах можно найти участки обеих структур. В наиболее полнопроявленных вторичных аляскитах структура приближается к равнозернистой, т.к. размеры зерен основной массы сопоставимы с размерами вкрапленников. Предполагается, что аляскитизация питерлитов вызвана метасоматическим воздействием, сопутствующим внедрению лейкогранитов (Бескин и др., 1983). При этом во вторичных аляскитах часто сохраняются фрагменты структуры рапакиви, а именно – овоидные вкрапленники щелочного полевого шпата с гранофировым кварцем в краевой части.

Сравнение количественных параметров структуры вторичного аляскита с другими породами показало, что на диаграмме в координатах 2 – Скорр он попадает в поле гранитов Б, очень близко к лейкогранитам Салминского массива (точка 5 на рис. 3). Извилистость границ кварцевых зерен на уровне 120-250 мкм (по измерению фрактальной размерности) для вторичного аляскита несколько ниже, чем у лейкогранита, но это различие ненамного превышает погрешность измерения. С другой стороны, изучение частоты межзеренных границ на приборе МИУ-5М показало, что в биотитовом лейкограните срастания кварц-кварц встречаются часто (КА = 1,0), тогда как во вторичном аляските таких срастаний практически нет (КА = 0,2). Это подтверждается и на качественном уровне петрографическими наблюдениями в шлифах. Существующие экспериментальные данные (Ikeda et al., 2002) указывают на то, что цепочные агрегаты кварца магматических лейкогранитов и аляскитов (гранитов типа Б) образовались в результате ранней кристаллизации полевых шпатов с последующим «слипанием» (кластеризацией) зерен последних. Кварц в этом случае кристаллизовался из остаточного расплава в оставшемся пространстве, и поэтому его зерна неизбежно граничат друг с другом. При аляскитизации же гранитов рапакиви, скорее всего, происходила собирательная перекристаллизация кварца, с укрупнением зерен, то есть несколько соседних разноразмерных зерен кварца объединялись в одно, не граничащее с другими. Этим объясняются значения КА, пониженные даже по сравнению с неизмененным питерлитом. Агрегативность же породообразующих минералов в биотитовых лейкогранитах Салминского массива близка к таковой у пород лейкогранит-аляскитовой формации, взятых в качестве эталонов (табл. 3).

Таблица 3. Сравнение агрегативности вторичных аляскитов с гранитами А и Б

Порода Коэффициент агрегативности КА
Pl-Pl Qtz-Qtz KFsp-KFsp Bt-Bt
Неизменный питерлит (гранит А) 0,5 0,6 0,2 0,2
Вторичный аляскит по питерлиту 0,2 0,2 0,3 0,0
Биотитовый лейкогранит (гранит Б) 0,5 1,0 0,4 1,7
Эталонный гранит Б 0,5 0,9 0,5 1,0


Pages:     | 1 || 3 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.