авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 3 | 4 ||

Адаптация водорослей баренцева моря к условиям освещения

-- [ Страница 5 ] --

Для всех видов водорослей важным приспособлением является синхронизация жизненного цикла с условиями окружающей среды, закрепленная на генетическом уровне, что подтверждается наличием эндогенных ритмов развития. Это позволяет наиболее оптимально распределить фазы жизненного цикла с учетом воздействия на них стимулирующих (оптимальной температуры, освещенности, биогенов) или подавляющих (низкая температура, УФ-излучение) факторов среды. Данный механизм регулируется фотопериодом и спектральным составом освещения.

Таким образом, распространение водорослей происходило вследствие совершенствования механизмов, обеспечивающих их существование в высоких широтах Мирового океана, и сопровождалось эволюционными изменениями, приводившими к образованию новых видов. Так отличие в эволюционной направленности видообразования ламинариевых (неотения, педоморфоз) и фукусовых водорослей (усложнение организации) (Перестенко, 1998, 2000) определило различие в механизмах адаптации к условиям освещения.

Существенно, что большое количество водорослей различных систематических таксонов, обитающих в полярных регионах, имеют сходные физиологические адаптации к низкому уровню освещения и температуре, что также было подтверждено различными авторами (см. обзор Gomez et al., 2009). Таким образом, данное исследование подтверждает гипотезу о существовании некоего барьера из комплекса факторов среды, контролирующего биогеографическое распространение водорослей (Gomez et al., 2009).

ЗАКЛЮЧЕНИЕ.

Ведущим фактором внешней среды, оказывающим влияние на водоросли, как на представителей фотоавтотрофных организмов, является освещение. Как показало проведенное исследование, составляющие данного фактора - интенсивность, спектральный состав и фотопериод – оказывают значительное воздействие на все стадии жизненного цикла водорослей. Однако функциональная значимость этих составляющих различается. Так фотопериод и спектральный состав света выступают в роли сигналов, синхронизирующих эндогенные ритмы функционирования организма (периоды интенсивного роста, размножения, накопления запасных веществ, снижения метаболической активности в зимний период и т.д.) с факторами внешней среды. Например, влияние спектрального состава ярко проявляется в индукции гаметогенеза при синем свете и остановке данного процесса при красном. Влияние фотопериода - в образовании новой пластины или спорогенной ткани у ламинариевых водорослей при короткодневном освещении.

Сигнальная роль фотопериода может проявляться и при сезонных перестройках фотосинтетического аппарата: изменение площади поверхности тилакоидных мембран, содержания и соотношения фотосинтетических пигментов, размеров ССК. Было показано влияние фотопериода на содержание фотосинтетических пигментов у Palmaria decipiens (Lder et. al., 2001). Интенсивность освещения в этом случае может выполнять дополнительную, корректирующую роль, для наиболее успешного функционирования фотосинтетического аппарата в конкретных световых условиях. Пределы возможных изменений ФСА заложены генетически и определяют диапазон интенсивности освещения, пригодного для существования вида.

Акклимация к искусственному изменению интенсивности освещения, например при экспериментальных исследованиях, также проявляется в перестройке фотосинтетического аппарата, но в меньших пределах, и сопровождается значительным повышением метаболической активности. Опыты с увеличением глубины произрастания водорослей показали, что снижение интенсивности освещения до определенного уровня (конкретное значение зависит от видовой принадлежности) вызывает накопление фотосинтетических пигментов. При дальнейшем снижении освещения наблюдается разрушение ФСА и деградация таллома. Однако в природных условиях в осенний период, при значительно более низкой интенсивности и дозе освещения, функциональная активность водорослей не снижается.

Анализ сезонных изменений фотосинтетического аппарата показал, что у водорослей разных систематических групп, несмотря на различия в наборе фотосинтетических пигментов и строении ФСА, наблюдаются сходные адаптационные перестройки. В зимний период у всех видов происходит увеличение размеров ССК, площади тилакоидных мембран и содержания фотосинтетических пигментов, в летний – снижение.

Вместе с тем, имеются и отличия в сезонном содержании некоторых каротиноидных пигментов у водорослей, принадлежащие к различным отделам. Однако, по всей вероятности, данные отличия связаны не с работой фотосинтетического аппарата, а с функциональной направленностью организма в определенный период времени, например, с формированием органов размножения.

Произрастание водорослей в приполярных районах зависит не только от адаптации фотосинтетического аппарата к изменяющимся условиям освещения (в основном к низкой интенсивности света), но и от адаптации к низкой температуре окружающей среды. Анализ изменений, происходящих на различных уровнях у высших растений при адаптации к низкой температуре и у водорослей при низкой интенсивности освещения, показал, что имеется большое количество сходных изменений. На уровне организма наблюдается торможение метаболических процессов, а также синхронизация сезонного ритма развития организма с условиями окружающей среды. На клеточном уровне - изменение численности (или парциального объема в клетке) митохондрий и хлоропластов, тилакоидов в хлоропласте. На молекулярном уровне - изменение содержания фотосинтетических пигментов и доли хлорофиллов, относящихся к ССК. У высших растений, адаптированных к холоду, и у зеленых водорослей при низкой интенсивности освещения наблюдается снижение парциального объема крахмальных гранул. При гидролизе крахмала происходит накопление водорастворимых углеводов в цитоплазме (что способствует снижению температуры точки образования льда), а также их потребление для поддержания процессов клеточного метаболизма при недостатке ассимилятов, синтезирующихся в процессе фотосинтеза.

Описанные перестройки ФСА происходят вследствие снижения уровня светового насыщения фотосинтеза при низких температурах, что было показано на высших растениях и зеленых водорослях (Mawson, Cummins, 1991; Gray et al., 1997; Huner et al., 1998; Morgan et al., 1998). Таким образом, результаты наших исследований и анализ литературных данных показали, что, несмотря на многообразие жизненных форм водорослей, на разницу в месте и времени происхождения, их эволюция и распространение в высокоширотные районы Мирового океана привели к конвергентному функционированию фотосинтетического аппарата водорослей различных систематических групп.

ВЫВОДЫ.

Проведенные экспериментальные исследования и натурные наблюдения выявили адаптации водорослей Баренцева моря к меняющимся в течение года условиям освещения:

1. У водорослей-макрофитов Баренцева моря адаптация к изменению интенсивности освещения в течение года происходит путем структурных и функциональных перестроек фотосинтетического аппарата: изменение удельной поверхности фотосинтетических мембран, содержания и соотношения фотосинтетических пигментов, размеров ССК.

2. Вариабельность размеров ССК в течение года зависит от систематической принадлежности (повышается в ряду бурые < красные < зеленые водоросли) и высоты произрастания водорослей (наибольшая у водорослей верхней литорали).

3. На Мурманском побережье в период полярной ночи интенсивность освещения в течение нескольких дневных часов является достаточной для осуществления процессов фотосинтеза у водорослей.

4. Возможность и продолжительность существования многолетних видов водорослей Баренцева моря при отсутствии освещения определяется наличием следующих типов питания:

- потребление внутриклеточных запасных веществ (виды с тонкопластинчатой организацией таллома);

- потребление веществ, образующихся при деструкции таллома (ламинариевые водоросли). Определяется наличием гетеротрофных слоев клеток и транспорта веществ по таллому;

- переход на гетеротрофный способ питания (фукусовые водоросли).

Каждый последующий тип питания подразумевает наличие более простого и увеличивает продолжительность жизнеспособности водорослей при отсутствии освещения. Их фотосинтетический аппарат в этот период остается в интактном состоянии.

5. Изменение характера освещения при увеличении глубины произрастания вызывает накопление фотосинтетических пигментов у исследованных видов водорослей. Увеличение размеров ССК наблюдается только у видов, произрастающих на верхней литорали. Адаптационные перестройки эффективны до определенной глубины, являющейся нижним пределом произрастания вида, и сопровождаются повышением метаболической активности, при этом влияния изменения спектрального состава освещения на пигментный аппарат водорослей не выявлено.

6. Нижняя граница произрастания сублиторальных макрофитов зависит от толерантности различных стадий жизненного цикла к освещению, температуре и уровню гидростатического давления. Вертикальное распространение ламинариевых водорослей в мутных водах ограничивается недостатком освещения, в прозрачных – уровнем гидростатического давления.

7. Жизненные циклы и эндогенные ритмы функциональной активности водорослей синхронизированы с условиями внешней среды, при этом синхронизирующими сигналами являются фотопериод и спектральный состав света.

8. Совершенствование адаптации к условиям освещения и низкой температуре определило возможность распространения водорослей в полярные районы.

9. Эволюционное развитие и адаптация к условиям существования в высокоширотных районах Мирового океана привели к конвергентному сходству в функционировании фотосинтетического аппарата водорослей различных систематических групп.

Основные положения диссертации опубликованы в следующих работах:

Kuznetzov L.L., Makarevich P.R., Makarov M.V. Structural and productional indices of marine phytocenoses // Environment and ecosystems of the Franz Josef Land (Archipelago and shelf). Apatity. 1993. Р. 98-104.

Шошина Е.В., Макаров В.Н., Макаров М.В. Особенности биологии ламинариевых водорослей Земли Франца-Иосифа. // Биология моря. 1997. Т. 23. №5. С. 286-292.

Воскобойников Г.М., Макаров М.В. Влияние физических и химических факторов на выход, подвижность и развитие спор. // Промысловые и перспективные для использования водоросли и беспозвоночные Баренцева и Белого морей. Апатиты: изд. КНЦ РАН. 1998. С. 68-81.

Макаров М.В., Воскобойников Г.М. Влияние ультрафиолетовой радиации на споры Laminaria saccharina (Phaeophyta). // Бот. журн. 1999. Т. 84, №10. С. 63-72.

Makarov M.V. Influence of ultraviolet-radiation on the growth of the dominant macroalgae of the Barents Sea. // Chemosphere: Global Change Science. Climate Change Effect on Northern Terrestrial and Freshwater Ecosystems. 1999. V. 1. No. 4. Р. 461-469.

Макаров М.В., Воскобойников Г.М., Шошина Е.В., Матишов Г.Г. Влияние ультрафиолетовой радиации на рост и размножение ламинарии сахаристой (Laminaria saccharina (L.) Lamour.) Баренцева моря. // Доклады РАН. 1999. Т. 367. №2. С. 286-288.

Makarov V.N., Makarov M.V., Schoschina E.V. Seasonal dynamics of growth in the Barents sea seaweeds: endogenous and exogenous regulation. // Bot. Mar. 1999. V. 42. N. 1. P. 43-49.

Makarov M.V., Voskoboinikov G.M. The Influence of Ultraviolet-B Radiation on Spore Release and Growth of the Kelp Laminaria saccharina. // Bot. Mar. 2001. V. 44. Р. 89-94.

Voskoboinikov G., Makarov M., Maslova T., Sherstneva O. The photosynthetic apparatus of Ulvaria obscura during the polar day and polar night. // Phycologia. 2001. V. 40. No. 4 (Suppl.). Р. 83.

Макаров М.В., Облучинская Е.Д., Воскобойников Г.М., Рыжик И.В. Биологически активные вещества макрофитов Баренцева моря: содержание, механизмы накопления, технологии получения и перспективы использования. // Сб. Север-2003. Проблемы и решения. Апатиты. 2004. С. 218-229.

Тропин И.В., Макаров М.В. Фотосинтетический аппарат представителей Fucales (Phaeophyta) Баренцева моря после полярной ночи. // Альгология. 2004. Т. 4..№ 4. С. 393-404.

Воскобойников Г.М., Макаров М.В., Маслова Т.Г., Шерстнева О.А. Ультраструктура и пигментный состав фотосинтетического аппарата зеленой водоросли Ulvaria obscura в полярный день и полярную ночь. // Доклады РАН. Общая биология. 2004. Т. 394. № 3. С. 423-426.

Матишов Г.Г., Макаров М.В. Изменения пигментного состава Fucus vesiculosus L. и F. serratus L. Баренцева моря при длительном нахождении в темноте. // Доклады РАН. Общая биология. 2004. Т. 397. № 5. С. 1-2.

Воскобойников Г.М., Макаров М.В., Рыжик И.В. Изменения в составе фотосинтетических пигментов и структуре клеток Fucus vesiculosus L. и F. serratus L. Баренцева моря при длительном нахождении в темноте. // Биология моря. 2006. Т. 32. № 1. С. 26-33.

Макаров М.В., Рыжик И.В., Воскобойников Г.М., Матишов Г.Г. Дифференциация пластины Laminaria saccharina (L) Lamour. как приспособление к длительному отсутствию освещения. // Доклады РАН. Общая биология. 2006. Т. 409. № 2. С. 1-2.

Макаров М.В., Рыжик И.В., Воскобойников Г.М., Матишов Г.Г. Влияние интенсивности движения воды на морфологические и физиологические показатели Fucus vesiculosus L Баренцева моря. // Доклады РАН. Общая биология. 2007. Т. 415. № 4. С. 1-2.

Воскобойников Г.М., Макаров М.В., Рыжик И.В., Малавенда С.В. Влияние абиотических факторов на структуру фитоценозов, морфологические и физиологические особенности водорослей-макрофитов Баренцева моря. // Динамика морских экосистем и современные проблемы сохранения биологического потенциала морей России. Владивосток: Дальнаука. 2007. С. 357-386.

Рыжик И.В., Макаров М.В. Активизация физиологических процессов у Fucus vesiculosus (L) Баренцева моря при произрастании в поверхностном слое воды. // Материалы конференции РБО. Петрозаводск, сентябрь. 2008. С. 173-174.

Макаров М.В., Рыжик И.В., Воскобойников Г.М. Механизмы существования бурых водорослей в период полярной ночи: функциональная дифференциация и гетеротрофия. // Сб. Современные проблемы альгологии, Мат. междунар. научн. конф. Ростов-на-Дону, 9-12 июня. 2008. С. 225-227.

Макаров М.В., Степаньян О.В. Выбор потенциальных биоиндикаторов состояния морских экосистем. Водоросли. // Новые технологии мониторинга природных процессов в зоне взаимодействия пресных и морских вод (биологическая индикация). Апатиты. 2009. С. 60-69.

Макаров М.В. Влияние давления на ранние онтогенетические стадии ламинарии сахаристой (Laminaria saccharina (L.) Lamour.). // 8-я Всероссийская школа по морской биологии «Проблемы морской палеоэкологии и биогеографии в эпоху глобальных изменений» (Мурманск, ноябрь 2009). М.: ГЕОС. 2009. С. 106-112.

Макаров М. В., Рыжик И. В., Воскобойников Г. М., Матишов Г. Г. Влияние глубины произрастания на морфофизиологические показатели Fucus vesiculosus L. Баренцева моря. // Доклады РАН. Общая биология. 2010. Т. 430. № 3. С. 427–429.



Pages:     | 1 |   ...   | 3 | 4 ||
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.