авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 7 |

Оценка взаимодействия гидрохимических и гидродинамических факторов склонового стока

-- [ Страница 2 ] --

Анализ изменчивости характеристик стока по годам, типам почв, агрофонам показал, что среднеквадратичная ошибка расчета при расчетах по годам в целом выше, чем при расчетах всего ряда наблюдений, или при дифференциации данных по типам почв и агрофонов. Проверка рядов данных, дифференцированных по типам почв, агрофонов и годам на однородность, т.е. соответствие выборочного ряда общей совокупности наблюдений по критерию Стьюдента показала, что ряды, дифференцированные по агрофонам наиболее однородны, а по годам - наименее однородны.

Раздел 3. Гидродинамические процессы в склоновых водотоках. Решающую роль в процессах транспорта наносов, рассеяния энергии, диффузии и др. отводят турбулентности потоков. Измерение в натуре характеристик турбулентности в склоновых потоках провести сложно из-за громоздкости существующей в настоящее время аппаратуры. Однако оценить их величины через осредненные параметры потоков вполне возможно. Правомерность такого подхода базируется на том, что многие характеристики турбулентности открытых потоков сначала были определены в лотках, а потом проверены на реках, склоновые же потоки по своим параметрам ближе к лоткам, чем реки. Гидродинамические особенности водотоков обычно характеризуются следующими характеристиками: число Рейнольдса (Re), число Фруда (Fr), гидравлические сопротивления, касательные напряжения, относительная ширина и устойчивость русела, диссипация энергии и масштабы вихрей. Оценки таких величин как число Рейнольдса (Re), число Фруда (Fr), коэффициенты Шези (C) и шероховатости (n), турбулентное трение (t) проводились раньше (о чем подробно описано в главе 1), такие характеристики как вязкостное трение (b), относительная ширина (B/h) и устойчивость русела (), диссипация энергии () и масштабы вихрей для склоновых водотоков приводятся впервые.

При любых условиях формирования талого стока в склоновых водотоках преимущественно наблюдается переходный режим течения. По длине склона происходят колебания режима течения. Наибольшее влияние при снеготаянии на величину числа Рейнольдса оказывают расход воды в водотоке, форма русела и длина склона.

Тип снеготаяния влияет на величину числа Рейнольдса. Наибольшая обеспеченность больших значений чисел Re отмечена при адвективном типе снеготаяния, наименьшая - при солярном. При Re>5000 Fr=0,138-4,68, в 51,9% случаев Fr>1.

Движение воды по склону при ливнях носит как ламинарный, так и турбулентный характер. Причем, характер движения воды в водотоке по длине склона может существенным образом изменяться. Характер режима движения воды по склону существенным образом зависит от агрофона, даже значимость влияния факторов на число Рейнольдса на разных агрофонах отличается. Так, если для многолетних трав и пропашных значимость факторов уменьшается в следующем порядке: интенсивность осадков, продолжительность дождя, время от начала выпадения дождя, то для пара наиболее значимы плотность почвы, время от начала дождя и длина склона от водораздела до створа измерения, на естественном кормовом угодье наиболее значима максимальная глубина потока, уклон склона и влажность почва. При Re>5000 Fr=0,0908-5,94, в 53% случаев Fr>1.

При ливнях склоновые водотоки чаще находятся в бурном состоянии (по числу Фруда), чем при снеготаянии (соответственно 24,5 % случаев и 12,3 %). Вероятность их аэрации при ливнях также выше. Вероятность формирования бурного состояния потока выше при турбулентном режиме течения, чем при переходном. Вероятность формирования не распластанных потоков (B/h<7) выше при Re<5000 и Fr<1. На формирование величины числа Fr как при ливнях, так и при талом стоке преимущественно влияют влажность почва, уклон и длина склона, гранулометрический состав почвы.

Обеспеченность формирования бурных потоков при солярно- адвективном типе снеготаяния выше, чем при адвективном, при солярном типе снеготаяния обеспеченность формирования бурных потоков наименьшая (3%).

Статистический анализ взаимосвязей величин Fr и характеристик подстилающей поверхности, морфометрии склона и агрофона показал, что от года до года значимость факторов в зависимостях меняется, так как изменяются сами условия формирования стока, тип снеготаяния и др. Однако, среди исследованных факторов наибольшее влияние на формирование величины числа Fr имеют влажность почва, ее глубина оттаивания, уклон и длина склона, гранулометрический состав почвы.

Значение коэффициента Шези С изменяется в очень широких пределах для талого стока 1,26-1512 м0,5/с при коэффициенте вариации Cv= 3,98, для ливней 1, 04-465 м0,5/с при Cv =2,03. Обеспеченность краевых величин выборок небольшая. Чаще всего экстремально высокие величины С встречаются на зяби. Здесь же встречаются и наибольшие величины Сv, наименьшие - на озими. Вероятность того, что величина С превысит 50 м0,5/с на зяби составляет 9%, на многолетних травах 7%, на озими 0,6%. Длина склона и его уклон при талом стоке решающего значения на величину коэффициента С не имеют. В основном, величина С определяется здесь формой русела (или ее составными: шириной и глубиной русела), глубиной оттаивания почвы, агрофоном, влажностью и плотностью почвы и температурой воды, т.е., в основном, суммарное сопротивление формируется за счет местных условий. От агрофона к агрофону значимость влияния факторов на величину коэффициента Шези изменяется. Так, если на зяби преимущество остается за формой русела, плотностью почвы, длиной склона и температурой воды, то на многолетних травах - за почвенной разностью, влажностью почвы, длиной склона и температурой воды, на озимых - за формой русела, плотностью почвы и уклоном склона.

Наибольшие величины С при ливнях отмечены на многолетних травах и естественном кормовом угодье, наименьшие - на пару. Длина линии стока воды здесь несомненно влияет на величину гидравлического сопротивления: чем дальше от водораздела проводятся измерения, тем большие величины С можно наблюдать. Влияние уклона склона здесь незначительно. Наибольшее влияние на величину С при ливнях имеют плотность почвы, количество осадков, форма русела и интенсивность осадков, причем, от агрофона к агрофону значимость влияния факторов на формирование величин С изменяется. Так, на естественном кормовом угодье величина коэффициента Шези больше зависит от (факторы расположены в порядке уменьшения их значимости) плотности почвы, интенсивности осадков, температуры воды и длины склона, а на пропашных от количества осадков, плотности почвы, интенсивности осадков и гранулометрического состава почвы, на пару - от длины склона, интенсивности осадков, времени от начала выпадения осадков и влажности почвы, на многолетних травах - от длины склона, гранулометрического состава почвы, уклона склона и времени от начала выпадения осадков.

Анализ изменения коэффициента шероховатости (n) для талого стока, вычисленного по формуле Шези- Маннинга, показал, что максимальные его значения наблюдаются на озими. На зяби наблюдается максимальная изменчивость величины коэффициента шероховатости в створе измерений. Наименьшая величина коэффициента шероховатости отмечена на многолетних травах, здесь и изменчивость этой величины в створе незначительная. Максимальное из наблюденных значений коэффициента шероховатости на черноземах на лессах составило: для зяби - 0,202, для озими - 0,18, для многолетних трав - 0,151, на черноземах на песках для зяби - 0,049 на черноземах типичных на легких суглинках 0,097, на серых лесных почвах 0,378. Вероятность того, что величина коэффициента шероховатости превысит 0,1 составляет 9,6 %, в то время как с гарантией в 52 % можно утверждать, что его величина не превысит 0,05.

При ливнях коэффициент шероховатости изменяется от 0,000907 до 0,367 при Cv=1,18. Здесь абсолютный максимум n наблюдается на пару, вариация n здесь минимальна, а наибольшая вариация n наблюдается на выравненных уплотненных поверхностях (0, 002-0,091) при Cv = 1, 5-1,7. В общем, вероятность того, что n превысит 0,1 составляет 13,1%.

Диапазон изменения величин турбулентного трения при талом стоке составил 0, 000061-95,0 Н/м2. Вероятность того, что величина t превысит 10 Н/м2 составляет 19,2 %. В нашем случае нулевые значения мутности не отвечали минимальным касательным напряжением в потоке, 1/3 наблюдений, при которых наносы не транспортировались, приходились на диапазон величин турбулентного трения 1, 47-1,72 Н/м2, что наблюдались, в основном, на озими в утренние время при возобновлении стока воды по размоинам по еще не оттаявшей почве. Обеспеченность больших значений турбулентного трения выше на озимых, далее идут многолетние травы и зябь, в то время как для вязкостного трения, наоборот, максимальные значения преимущественно наблюдаются на зяби, на озими значения вязкостного трения выше, чем на зяби в области очень редких повторяемостей. Вероятность превышения вязкостным трением турбулентного выше на многолетних травах, далее идет зябь, на озими вероятность того, что вязкостное трение превысит турбулентное минимальная.

Вязкостное трение при ламинарном режиме меньше, чем при других режимах движения воды, однако именно при ламинарном режиме и близкому к нему наблюдается превышение вязкостным трением турбулентного трения.

Величина турбулентного трения при ливнях изменялась в пределах 0,000424 - 25,87 Н/м2, при Cv = 1,18. Вероятность того, что турбулентное трение превысит 5 Н/м2 составляет 36,4 %, 10Н/м2-15 %.

Величина вязкостного трения при ливнях составляла 0,00344 - 0,16 Н/м2 при Cv=0,80. Вероятность того, что вязкостное трение превысит 0,065 Н/м2 составляет 2,8%, а 0,05 Н/м2-7,5%. В процентном отношении вязкостное трение составляет от турбулентного 0,024-4022 %, в 5,6 % случаев вязкостное трение превышает турбулентное, в других случаях вязкостное трение составляет от турбулентного не более 88 %. Причем, в 86 % случаев величины вязкостного трения составляют от турбулентного не более 7 %. При ливнях вероятность появления больших значений турбулентного и вязкостного трение выше, чем при талом стоке.

При ливнях максимальные величины турбулентного и вязкостного трения наблюдаются на естественном кормовом угодье и на многолетних травах. На пропашных величина турбулентного трения не превышает 3,6 Н/м2, а на пару 8,9 Н/м2. Здесь t в 40% случаев превышает 5 Н/м2, в то время как на естественном кормовом угодье величина t в 13 % случаев превышает 10 Н/м2, а в 31,7% случаев - 5 Н/м2, на многолетних травах в 53 % случаев величина t превышает 10 Н/м2, а в 70,6 % случаев 5 Н/м2.

Величины турбулентного трения, которые наблюдаются, практически всегда превышают предлагаемые в литературе критические величины. На формирование турбулентного трения при талом стоке влияют в основному агрофон и тип снеготаяния.

При ливневом стоке вероятность формирования больших величин турбулентного трения больше чем при снеготаянии. Здесь на формирование турбулентного трения большее влияние имеют агрофон, уклон склона и характеристики дождя (количество осадков, их интенсивность и др.). По частоте появления больших величин турбулентного трения при талом стоке агрофона можно расположить в следующий убываемый ряд: многолетние травы, зябь, озимь, при ливневом стоке: естественное кормовое угодье, многолетние травы, пар, пропашные.

Проведенные исследования показали, что несмотря на то, что вязкостное трение в большинстве случаев существенно меньше чем турбулентное влияние вязкостного трения на размыв не меньше, а в некоторых случаях и больше, чем турбулентного. Что, вероятно, связано с особенностями структуры талой воды при талом стоке, и взаимодействии нагретой солнцем почвы с холодной водой атмосферных осадков при ливнях.

Ручейковые потоки на склонах можно отнести к русловым сильно деформирующимся, поэтому к ним также может быть применен аппарат изучения русловых процессов на реках. Возможность применения соотношений, которые характеризуют морфометрию и стойкость речных русел к склоновым потокам вытекает из вывода, сделанного Н.А. Ржаницыным (1985) на основе анализа натурных данных: плановые формы русловых образований естественных русловых потоков любых размеров, которые формируются в процессе свободного меандрирования между руслом (грунтами ложа) и потоком, геометрически подобны друг другу.

В отличие от рек, начало формирования и все стадии развития которых человек не в состоянии проследить натурно, стадии формирования ручейковой сети на склонах проследить легко. Так, (если одновременно со снеготаянием не выпадает дождь) в связи с тем что нижняя часть склонов прогревается лучше, а также в силу действия законов гравитации (потоки влаги в снеге и под снегом по еще не оттаявшей почве направлены в понижения рельефа) первоначальное формирование ''русловых'' размывов наблюдается в нижней части склона, потом, по мере таяния снега и почвы, зона ''русловых'' размывов продвигается вверх по склону. Так, на озими за двое суток стока зона ''руслового'' размыва продвинулась вверх на 60 м. Причем, на ниже расположенных участках изменился характер русловых форм. Если в начале наблюдений в верхней зоне ''русловым'' размывам характерные были практически прямолинейные очертания, то после продвижения зоны вверх здесь наблюдались извилистые формы типа меандр, а на нижних участках склонов начали образовываться побочни и осередки, т.е. вместе с зоной ''русловых'' размывов продвигаются и русловые формы. Временной фактор здесь играет важную роль. Время существования стока зависит от запасов снега на полях, глубины промерзания почвы, типа снеготаяния и других, что в свою очередь, определяет то каких стадий морфогенеза достигнут русловые образования на склоне. Поэтому исследовать морфогенез русловых форм на склонах целесообразно, как во времени, так и в пространстве, причем здесь особое значение приобретает определение обеспеченности (вероятности появления) тех или других величин морфометрических характеристик на разных элементах рельефа и в связи с изменчивостью других определяющих факторов формирования стока.

Максимальные глубины потоков при снеготаянии были в пределах 0,004-0,11 м, вероятность того, что максимальная глубина превысит 0,05 м составляет 8,7 %. Диапазон изменения ширины потоков (В) составил 0, 02-7,11 м, причем, самые широкие потоки отмечались на супесчаных и суглинистых почвах, самые узкие - на тяжелосуглинистых. Диапазон изменения B/h (h- средняя глубина потока) составил 1, 14-444,4, в 28,5 % случаев величина B/h менее 7, в этом случае поток нельзя считать плоским, причем на многолетних травах в 17% случаев B/h<7, на озимых - в 36% и на зяби - в 25 %. Поскольку травы создают подпор и оказывают содействие распластыванию потока, ручейки размыва на травах встречаются реже, скрепление почвы корнями растений здесь крепче, стенки русела более устойчивые, что и определяет их более распластанную форму. На зяби почва более распылена и не сдерживается корнями растений, поэтому и процент случаев не распластанных потоков здесь больше, чем на многолетних травах.

Прослеживается некоторая связь вероятности появления величин B/h<7 с разновидностью почв и грунтов. Так, на мергелях величин B/h<7 не наблюдалось вообще, на черноземах обыкновенных на слабомощных лессах, подстилаемых мергелем вероятность появления величин B/h<7 составляет 18,8 %, на черноземах на песках - 6 %, на черноземах обыкновенных на лессе - 30,8 %, на серых лесных почвах 35%, на черноземах типичных 30%. По всей видимости, распределение величин вероятности превышения здесь связано с плотностью и гранулометрическим составом почв. Из всех исследуемых почв и грунтов наиболее плотными являются мергели, но они также имеют и наиболее комковатую структуру, в то время как серые лесные почвы имеют значительную плотность, но верхний их пласт сильно распылен, практически безструктурен.

С увеличением длины склона вероятность появления величин B/h<7 убывает, так при длине склона 0- 50 м вероятность того, что B/h<7 составляет 43,4 %, а при длине 150- 350 м - 19 %, т.е. ближе к водоразделу потоки менее распластаны.

С увеличением уклона склона вероятность появления величин B/h<7 убывает, при уклоне склона 10- 50‰ - вероятность появления величин B/h<7 составляет 21,2 %, а при 100- 170 ‰ - 35,7 %, т.е. с увеличением уклона склона вероятность формирования более распластанных потоков увеличивается.

Диапазон изменения критерия устойчивости русел по И.Ф.Карасеву (1983) (=B/h, -коэффициент гидравлического сопротивления) при талом стоке составил 0, 00335-105,5, при этом <4,5 наблюдалось в 56 % случаев, а >9,5 - в 18 %. С увеличением уклона склона вероятность формирования потоков с >9,5 возрастает, а потоков с <4,5 - убывает. Длина склона влияет на , но зависимость эта не однозначна. Вероятность формирования <4,5 на зяби больше чем на озими и многолетних травах, а >9,5 - наоборот - меньше. Наибольшие величины на многолетних травах, наименьшие - на зяби, т.е. наибольшая разветвленность русел на многолетних травах.

При снеготаянии: агрофон на распластаность потоков влияет слабо, только на многолетних травах обеспеченность B/h немного выше, чем на других агрофонах. В то время как на обеспеченность критерия устойчивости агрофон влияет. Так, если при обеспеченностях 40- 100% величины на озими имеют наибольшие обеспеченности, а на зяби - наименьшие, то при обеспеченностях 0- 5% наоборот.

Тип почвы влияет на величину B/h, наибольшую обеспеченность имеют потоки на черноземах на песках, в средней части кривой - на серых лесных почвах, в зоне малых обеспеченностей - потоки на мергелях и черноземы на мергелях. Наименее распластанными оказались потоки на черноземе типичном на легком суглинке и на черноземе обыкновенном на лессе.

Критерий устойчивости также зависит от типа почв. Так, в зоне малых обеспеченностей (0-10%) наибольшую обеспеченность имеет на серых лесных почвах, т.е. здесь потоки могут быть более разветвленные, потом идут черноземы на мергелях и черноземы на песках, в зоне же больших обеспеченностей (50-100%) наибольшую обеспеченность имеют потоки на черноземе типичном, потом идут серые лесные, мергели, чернозем на лессе, чернозем на песках и чернозем на мергелях.

Влияние режима потока на B/h выражено слабо, однако, можно утверждать, что при 700<Re<5000 обеспеченность величин B/h немного выше, чем при других режимах. В зоне редких повторяемостей ( 0-30%) обеспеченность больших значений B/h для Re>5000 наименьшая.

На величину влияние режима потока более выражена, чем на B/h, так при ламинарном режиме обеспеченность выше (только в зоне очень больших вероятностей 80- 100% ниже), чем при переходном и турбулентном.

Состояние потока (по числу Fr) влияет на величину B/h, так при бурном состоянии течения вероятность появления распластанных потоков выше, чем при спокойном. Лишь в зоне 25- 40% кривые обеспеченности совпадают.

При бурном режиме обеспеченность ниже, чем при спокойном.



Pages:     | 1 || 3 | 4 |   ...   | 7 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.