авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 || 4 | 5 |   ...   | 6 |

Обеспечение информационной защищенности автоматизированных систем управления воздушным движением в условиях роста интенсивности полетов

-- [ Страница 3 ] --

Распределение ПМ и ИМ по узлам сети определяется планом распределения, задаваемым матрицами

где:

k = 1, 2,..., K, f =1, 2,..., M, j = 1, 2,..., L.

Обозначим через z, объем восстановительного резерва k-го ПМ и f-го ИМ (число копий (предысторий) k-го ПМ, f-го ИМ) (k=1,2,...,K, f=1,2,...,M) соответственно.

При постановке задач оптимизации восстановительного резервирования информации в АС УВД могут быть использованы следующие критерии: максимум вероятности решения всех задач; минимум времени решения всех задач; минимум объема информации циркулирующей в сети.

В результате решения каждой задачи необходимо определить подмножество узлов АС УВД, размещение в каждом из которых ПМ (ИМ) и их резерва обеспечивает экстремальное значение используемого критерия оптимизации. Кроме того, при решении задач оптимизации восстановительного резервирования по критериям максимума вероятности решения всех задач и минимума времени их решения, необходимо определить объем резерва.

По критерию максимума вероятности решения всех задач, задача оптимизации восстановительного резервирования формулируется следующим образом.

Определить значения (k=1,2,…,K; j=1,2,…,L; f=1,2,…,M) такие, что

при ограничениях:

а) на время решения k-й задачи h-м абонентом j-й ЭВМ

б) на объем информации, циркулирующей в сети, при решении h-м абонентом j-го узла k-й задачи

в) на объем внешнего запоминающего устройств j-й ЭВМ

г) на значения переменных

;

где Vj -объем внешнего запоминающего устройств j-й ЭВМ;

- максимально допустимое время решения h-м абонентом j-й ЭВМ k-й задачи; - максимально допустимый объем информации, циркулирующей в системе при решении h-м абонентом j-й ЭВМ k-й задачи; - вероятность успешной передачи информации между узлами j (l) и i (r) при решении h-м абонентом (обращении k-го ПМ) j-й ЭВМ (размещенного в l-м узле) k-й задачи (к f-му ИМ); - вероятности доведения запроса на решение (на доступ к информации) и сообщения, содержащего результаты решения (обращения) h-м абонентом (k-м ПМ) j-й ЭВМ (размещенного в l-й ЭВМ) k-й задачи (к f-му ИМ) в i-м узле (находящемуся в r-м узле) сети соответственно; - вероятность того, что k-й ПМ, хранящийся на l-й ЭВМ, не будет в процессе обращения к нему h-м абонентом j-й ЭВМ разрушен или же будет успешно восстановлен, и вероятность того, что f-й ИМ, хранящийся на r-й ЭВМ, не будет в процессе обращения к нему k-го ПМ, находящегося на l-й ЭВМ, разрушен или же будет успешно восстановлен соответственно; - вероятность того, что k-й ПМ (f-й ИМ), хранящийся в l (r)-м узле будет разрушен к моменту обращения к нему h-го абонента (k-го ПМ) j (l)-й ЭВМ соответственно; , () - среднее время восстановления k-го ПМ (f-го ИМ) в j (r)-м узле; - среднее время передачи сообщения из i-го (l-го) узла сети в j-й (r-й) при решении (обращении) h-м абонентом (k-го ПМ) j-й ЭВМ (размещенного в l-м узле) k-й задачи (к f-му ИМ); qjhkf - число обращений k-го ПМ к f-му ИМ при его решении h-м абонентом j-й ЭВМ; - время решения k-го ПМ на l-й ЭВМ h-м абонентом j-го узла при наличии всех исходных данных; если h-й абонент j-й ЭВМ имеет право решать k-ю задачу, - в противном случае; - интенсивность решения k-й задачи h-м абонентом j-й ЭВМ; - длина запроса на решение (доступ к) k-й задачи (f-му ИМ) h-м абонентом (k-м ПМ) j-й ЭВМ(при g-м обращении к нему); - длина сообщения, получаемого в результате решения (доступа к) k-го ПМ (f-му ИМ) h-м абонентом (k-м ПМ) j-й ЭВМ (при g-м обращении к нему); - длина запроса на восстановление k-го ПМ (f-го ИМ); uk - объем k-го ПМ; - объем f-го ИМ.

Большая размерность общей задачи оптимизации восстановительного резервирования информации, дискретность, нелинейный характер целевых функций и ограничений не позволяет решить ее существующими методами и выдвигает проблему снижения размерности.

Для сокращения размерности задач оптимизации восстановительного резервирования информации предложена их декомпозиция на ряд взаимосвязанных подзадач, которые сведены к задачам следующих классов:

оптимизация распределения ПМ и ИМ в системе вычислительных средств АС УВД без учета их резервирования - к классу задач целочисленного линейного программирования со смешанными ограничениями;

оптимизация распределения восстановительного резерва ПМ и ИМ без учета возможности его разрушения (без определения объема резерва) – к классу целочисленных линейных задач;

оптимизация объема восстановительного резерва ПМ и ИМ - к двум стандартным задачам оптимального резервирования.

Для решения задач распределения ПМ, ИМ и их резерва по узлам сети предлагается использовать метод ветвей и границ, а для решения задачи оптимизации объема восстановительного резерва – метод встречного решения функциональных уравнений динамического программирования.

Третья глава посвящена разработке математических моделей обеспечения защищенности информации в АС УВД с распределенной обработкой данных контроля обстановки в воздушном пространстве России.

Надежная защита информации АС УВД и контроля за воздушной обстановкой может быть эффективной лишь в том случае, если она является надежной на всех объектах и во всех компонентах системы, которые могут быть подвергнуты угрозам со стороны дестабилизирующих факторов. При этом принципиальное значение имеет однозначное определение и формирование полных перечней тех объектов и элементов, которые, с одной стороны, могут быть подвергнуты угрозам с целью нарушения защищенности информации, а с другой - могут быть достаточно четко определены (обособленны) с целью организации защиты информации.

Потенциальные угрозы информации в АС УВД отличаются многообразием, сложностью своей структуры и функций, их действие направлено практически против всех структурных компонентов АС УВД, а их источники могут располагаться как в самой АС УВД, так быть и вне ее. Все существующие на сегодняшний день угрозы информации в АС УВД подразделены на несколько больших групп по следующим критериям: характеру источника возникновения, местоположению источника угроз, отношению угроз к процессу обработки информации, отношению угроз к элементам АС УВД, продолжительности реализации, воздействию на информационную среду, частоте попыток реализации, обнаружению попыток реализации.

Показано, что наибольшую опасность для АС УВД представляют преднамеренные угрозы, классификация которых приведена в работе.

Учитывая то, что АС УВД, построенные на базе сетей ЭВМ, интегрированы в глобальные информационно-вычислительные сети, наиболее опасным является реализация противником угроз информации, источник которых находится вне элементов АС УВД.

В связи с тем, что объем материальных средств, выделяемых на защиту информации, обычно ограничен, возникает задача рационального их распределения. При этом материальные средства целесообразно расходовать, в первую очередь, на нейтрализацию угроз, реализация которых может нанести АС УВД наибольший вред. Это ставит задачу предварительной оценки возможных угроз информации в системе, которая должна решаться на всех этапах жизненного цикла АС УВД.

Для формализованного описания ряда типовых угроз информации - программных атак использован аппарат сетей Петри. Такой выбор обусловлен следующими достоинствами сетей Петри: графическое представление моделируемой системы, способность наглядно описывать взаимодействие между процессами, наличие различных методов анализа, опыт широкого применения сетей Петри в качестве инструмента моделирования мультипрограммных, асинхронных, распределенных, параллельных недетерминированных и/или стохастических систем обработки информации и протекающих в них информационно-вычислительных процессов. Большим достоинством сетей Петри является возможность анализа таких свойств параллельных процессов, как безопасность, активность, сохраняемость, достижимость. Задача моделирования программной атаки может быть сформулирована следующим образом: дана сеть Петри PN, моделирующая атакуемую АС УВД; требуется дополнить исходную сеть Петри элементами, моделирующими процесс программной атаки, и определить достижимость во вновь полученной сети Петри состояния, соответствующего достижению цели атаки, или активность переходов исходной сети с учетом влияния внесенных элементов.

Проведенный анализ позволил определить, что для решения задач исследования временных параметров моделируемых процессов целесообразно использовать расширение формализма сетей Петри, известное как Е-сети.

Представлены модели программных атак на АС УВД («удаленное сканирование АС УВД», «ложный объект АС УВД», «отказ в обслуживании», «подмена субъекта взаимодействия в АС УВД»). Роль моделей программных атак заключается в адекватной формализации именно тех процессов, которые являются основными терминальными наблюдаемыми и управляемыми процессами в программно-информационной борьбе.

Формально модель Е задается в виде: E=<P, T, I, O, G>, где Р - множество позиций, Т - множество переходов, I - множество входных функций переходов, О - множество выходных функций переходов, G - множество глобальных переменных модели. Атака «ложный объект АС УВД» представлена в виде Е-сетевой модели на рисунке 4.

Описанные модели не только представляют самостоятельный практический интерес, но и являются примером возможной формализации описания других программных атак.

Представлена классификация и краткая характеристика современных средств и методов защиты информации в АС УВД.

Действие систем защиты должно сводиться к предотвращению причин и условий, ведущих к утечке, искажению или разрушению информации; обеспечению раннего обнаружения факта утечки, искажения или разрушения информации; ограничению (уменьшению) размера потерь от утечки, искажения или разрушения информации; обеспечению эффективного восстановления информации при ее разрушении и/или искажении.

Существующие в настоящее время средства и методы защиты информации, составляющие основу современных СЗИ, представлены в работе. К ним относятся физические, программные, аппаратные, программно-аппаратные и криптографические средства защиты информации.

Каждая из разновидностей средств и методов защиты информации обладает своими достоинствами и недостатками, областью применимости, поэтому конкрет-ный их выбор, при построении СЗИ, зависит от ряда факторов, таких как: структура, принципы и условия функционирования информационных систем, с учетом результатов анализа возможных целей нарушителя и угроз информации; стоимост-ные, эффективностные и эксплутационные характеристики средств защиты и др.

Использование конкретных средств защиты для построения СЗИ определяется важностью материального, информационного или другого ресурса, подлежащего защите, а также уровнем необходимой секретности, материальными возможностями организации, возможностями проведения различных организационных мероприятий, существующим законодательством и целым рядом других не менее значимых факторов.

Наличие информации о структуре информационно-вычислительного процесса АС УВД, анализа возможных угроз информации и средств их нейтрализации позволило осуществить моделирование действий нарушителя в данной системе с целью выбора состава комплексов средств защиты информации.

Обозначим через M общее число угроз информации; A – множество номеров угроз информации; F – число возможных целей нарушителя в защищаемой АС УВД; D –множество номеров средств защиты, которые могут быть использованы в системе защиты; Bf – множество номеров угроз информации, реализуемых нарушителем при достижении f–й цели; - множество номеров средств защиты,

которые потенциально могут быть использованы для противодействия реализации нарушителем f-й цели на j-м рубеже защиты (для нейтрализации j-й угрозы, входящей в f-ю цель) (f = 1,2,…,F; j = 1,2,…,M).

Причем, , , и .

В этом случае процесс реализации нарушителем каждой из своих целей может быть представлен в виде направленного графа, пример которого приведен на рисунке 5.

Вершины графа представляют собой состояния АС УВД, соответствующие попытке реализации нарушителем некоторой угрозы информации. Состояние системы S0 является начальным, то есть таким, при котором еще ни одна из угроз информации не реализована.

Состояние Sj () соответствует попытке реализации j-й угрозы. В случае ее успешной реализации, осуществляется переход к следующему состоянию системы, в противном случае (при штатном реагировании СЗИ) осуществляется переход к состоянию (на рисунке 5 ). Состояние является конечным и соответствует достижению нарушителем f-й цели (f=1,2,…,F). Дуги графа соответствуют направлениям переходов между состояниями. Каждая дуга характеризуется значением вероятности перехода между состояниями системы. Пунктиром обозначены дуги, соответствующие переходу из данного состояния в состояние .

Вероятность нахождения системы в k-м состоянии, при попытке реализации нарушителем f-й цели, будет определяться следующим выражением.

где I f - число уровней в ранжированном графе состояний, описывающем деятельность нарушителя при попытке реализации f-й цели; Gfi - множество номеров вершин, составляющих i-й уровень графа состояний, описывающего деятельность нарушителя при попытке реализации f-й цели, причем

; ;

- вероятность преодоления j-го рубежа защиты при попытке достижения нарушителем f-й цели ;

- вероятность успешного функционирования m-го средства защиты по противодействию деятельности нарушителя на j-м рубеже при попытке реализации им f-й цели (; f=1,2,…,F; ); qj - коэффициент согласования при переходе системы в j-е состояние; - уровень квалификации нарушителя при реализации f-й цели, , при попытке реализации им f-й цели (f=1,2,…,F), xjm=1, если m-е средство используется на j-м рубеже защиты, xjm=0 – в противном случае, (; ); - вероятность перехода из l-го состояния графа в k-е при попытке реализации нарушителем f-й цели.

Эффективность функционирования СЗИ может быть определена с помощью следующих параметров.

1. Средняя величина потерь АС УВД от реализации нарушителем всех целей.

,

где cjf = c1jf +c2jf + c3jf; c1jf, c2jf, c3jf – объем потерь системы от нарушения конфиденциальности информации, объем потерь от невыполнения ряда работ, стоимость восстановления системы защиты по реализации нарушителем j-й угрозы при попытке достижения f-й цели соответственно.

2. Вероятность реализации нарушителем всех целей

.

3. Вероятность успешного противодействия системы защиты действиям нарушителя по реализации им всех своих целей

.

4. Общая стоимость системы защиты

,

где - стоимость использования m-го средства на j-м рубеже, - стоимость m-го средства, - стоимость установки и обслуживания m-го средства на j-м рубеже защиты.

На основе разработанной математической модели действий нарушителя формализованы задачи оптимизации состава комплексов средств защиты информации по критериям минимума вероятности достижения нарушителем всех целей; минимума среднего уровня потерь системы от реализации нарушителем всех целей; максимума вероятности успешного противодействия системой защиты реализации всех целей нарушителем; минимума значения интегрального показателя «стоимость-риск». По вышеперечисленным критериям математические модели оптимизации состава комплекса СЗИ сформулированы следующим образом:

1. По критерию минимума вероятности достижения нарушителем всех своих целей: определить такие значения xjm (; ; f=1,2,…,F), что

При ограничениях: , (2)

, f = 1,2,…,F, (3)

, (4)

где - максимально допустимое значение стоимости системы защиты.

2. По критерию минимума среднего уровня потерь системы от действий нарушителя: определить такие значения xjm (; ; f=1,2,…,F), что

при ограничениях (2),(3),(4).

3. По критерию максимума вероятности успешного противодействия системы защиты действиям нарушителя: определить такие значения xjm (; ; f=1,2,…,F), что

при ограничениях (2),(3),(4).

4. По критерию минимума интегрального показателя «стоимость-риск»: определить такие значения xjm (;; f=1,2,…,F), что при ограничениях (3),(4):

где S - значение интегрального показателя «стоимость-риск», - допустимое значение вероятности реализации нарушителем f-й цели.



Pages:     | 1 | 2 || 4 | 5 |   ...   | 6 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.