авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 2 | 3 || 5 |

Методология формирования обликовых эксплуатационно-технических характеристик высокоэффективных самолетов нового поколения

-- [ Страница 4 ] --

В табл. 1 в качестве примера представлены оптимальные значения управляемых эксплуатационных факторов при экстремальных и средних значениях параметров внешней среды (Арктики и Крайнего Севера) и соответствующие им минимальные значения целевой функции для I группы событий применительно к самолету Ту-134. Решение задачи оптимизации ПТЭ произведен на ЭВМ.

Таким образом, подтверждена возможность решения задачи определения рационального состава целевых воздействий по управлению надежностью самолета с учетом экстремальных условий его эксплуатации, направленных на снижение значений параметра потока отказов систем самолетов нового поколения до уровня – 0,01х (в условиях безангарного технического обслуживания).

Таблица 1

Оптимальные значения эксплуатационных факторов.

Глава 4 посвящена разработанной автором методологии и механизму создания системы авиационных правил государственного регулирования и управления процессами эксплуатации самолетов, соответствующих стандартам ИКАО и международной практике.

Предлагаемая методология базируется на обобщении опыта трех основных школ эксплуатации:

- советской школы эксплуатации самолетов, действующей на основе национальных авиационных правил (Наставление по производству полетов, Наставление по технической эксплуатации авиационной техники и др.);

- европейской школы эксплуатации, которая регулируется системой европейских обязательных правил: JAR-OPS-1 (коммерческие самолеты); JAR-OPS-3 (коммерческие вертолеты); PART-M, PART-145, регулирующих сохранение летной годности самолетов; JAR-OPS-2, JAR-FCL и т.д.

- школы, основанной на соблюдении требований стандартов и рекомендуемой практики ИКАО (SARPs), в первую очередь Приложений 1, 6, 8 и 16, с учетом передового опыта мирового авиационного сообщества.

Разработанная методология учитывает наличие трех видов собственности – государственная, частная, частно-государственная, при этом отражены особенности эксплуатации трех состояний парка самолетов: разработки советско-российского производства; западного производства и смешанный парк (частично советского и частично западного производства).

Из всех существующих систем авиационных правил в качестве основы выбрана европейская система по признаку новизны по отношению к существующим, а также по признаку максимальных международных перевозок авиакомпаний стран СНГ, в том числе и РФ.

В качестве ограничений выбраны условия эксплуатации РФ и государств региона СНГ.

При разработке требований применительно к РФ и государствам СНГ были использованы наиболее жесткие требования каждой из представленной выше школ, однако при этом учитывалась возможность реализации этих требований в конкретных условиях конкретных государств. Это дало возможность применения правил с учетом реальных условий.

Систему авиационных правил можно представить как трехуровневую иерархическую структуру, рис. 11.

I уровень – Типовой воздушный кодекс, основополагающий закон, регулирующий деятельность гражданской авиации по всем ее направлениям, учитывающий все международные конвенции, которые ратифицировало государство (утверждается Парламентом и вводится в действие Указом Президента).

II уровень – авиационные правила, включающие государственные требования ко всем эксплуатантам, авиационному персоналу и центрам технического обслуживания и ремонта авиационной техники (разрабатывается Авиационными властями).

Рис. 11. Общая иерархическая структура авиационных правил.

III уровень – авиационные правила являются развитием правил II-го уровня в условиях конкретной авиакомпании, аэропорта, центра УВД и т.д. (разрабатывается авиакомпаниями, аэропортами и др.).

Указанная система правил выполнена на русском и английском языках, прошла экспертную оценку специалистов инспекций, летных и инженерных служб государств региона СНГ, экспертов европейских авиационных структур и экспертов аэронавигационного бюро ИКАО и издана в качестве инструктивного материала ИКАО, рекомендованного к внедрению в государствах авиационного сообщества.

Особое внимание в данной главе работы уделено разработке нового универсального критерия оценки безопасности полетов. Существующие критерии (показатели) оценки безопасности полетов, как абсолютные (количество авиационных происшествий, катастроф), так и относительные (количество авиационных происшествий, катастроф, отнесенные к объему транспортной работы: налету часов, количеству полетов, количеству перевезенных пассажиров, километражу и т.д.), которые используются в официальных документах ИКАО и других международных организациях гражданской авиации не являются в полной мере универсальными, не могут достаточно объективно оценивать фактическое состояние уровня безопасности полетов как в отдельных государствах, так и по регионам мира.

Достаточно привести данные ИАТА по региону СНГ в 2006 году: количество катастроф на 1000000 отправленных пассажиров составило 8,6; в Африке – 4,31; в Латинской Америке – 1,8; в Европе – 0,32; в Северной Америке – 0,49; в Азии – 0,69.

В то же время, данные IFALPA следующие: СНГ – 4,6; в Африке – 12; в Латинской Америке – 2,4; в Европе – 0,7; в Северной Америке – 0,5 и в Азии – 1,9, а по данным МАК: по СНГ – 0,25 катастроф на 100 тысяч часов налета для самолетов 1…3 классов.

Очевидно, что должны быть подходы к оценке уровня безопасности полетов, основанные на учете не только фактической, но и потенциальной опасности авиационных происшествий. Возникает необходимость создания универсального критерия, соответствующего новому определению безопасности полетов, принятому ИКАО. В работе предложен критерий, основанный на поправочных коэффициентах, учитывающих страховые выплаты за нанесенный ущерб от авиационного происшествия – «Критерий ущерба» - Ку. Для приведения нормативных значений по видам страховых выплат к общему знаменателю необходимо введение переводных коэффициентов, соответствующих требованиям Монреальской Конвенции гражданской авиации (1998 г.):

(37)

где: I – количество инцидентов;

E – количество авиационных происшествий;

Nпасс. – количество перевезенных пассажиров;

– коэффициент, пропорциональный страховым выплатам за гибель пассажиров и членов экипажа;

– коэффициент, пропорциональный страховым выплатам за раненых

авиапассажиров и членов экипажа;

– коэффициент, пропорциональный страховым выплатам за ущерб, нанесенный третьим лицам;

– коэффициент, пропорциональный страховым выплатам за самолет;

– коэффициент перевода страховых выплат по Варшавской Конвенции, по ряду Протоколов к Варшавской Конвенции и Монреальской Конвенции 1998 г.

С помощью данного универсального критерия можно количественно оценить уровень безопасности полетов в указанный период времени: при полетах на самолетах регулярных и чартерных перевозок, на вертолетах и самолетах малой авиации, комплексно и объективно характеризуя этот уровень в масштабах отдельного государства или региона.

В качестве статистических данных для определения коэффициента ущерба Ку предлагается использовать банк данных страховой компании «Ллойд».

Глава 5 посвящена практической реализации результатов исследования по формированию облика самолетов нового поколения в качестве одного из направлений на примере проектов семейства высотных, летающих до 20 км, самолетов М-60, разрабатываемых на ЭМЗ им. В.М. Мясищева, с новой аэродинамической схемой, с несущим фюзеляжем и верхним расположением двигателей в его хвостовой части и прямым крылом большого удлинения.

В результате применения необычной аэродинамической схемы был достигнут высокий проектный уровень летно-технических и технико-экономических характеристик, соответствующих разработанным и научно-обоснованным требованиям к вновь создаваемым и перспективным типам самолетов.

Самолеты семейства М-60 с крылом большого удлинения в сочетании с несущим фюзеляжем и в присутствии «экрана» позволяют уменьшить скорость взлета и посадки, а отсутствие сложной взлетно-посадочной механизации на крыле существенно повышает безопасность полетов и снижает массу конструкции самолета.

Снижение значений скоростей взлета-посадки, длины разбега-пробега позволяет эксплуатировать самолет с коротких ВПП (до 1500 м) по сниженной категории, что ведет к расширению сложившейся аэродромной сети, включая регионы Крайнего Севера, Сибири и Арктики.

Интеграция фюзеляжа, обладающего подъемной силой, с высоко несущим крылом большого удаления позволяет получить высокие значения аэродинамического качества (К>20) и снизить массу конструкции за счет разгрузки крыла несущим фюзеляжем более, чем на 25% (для расчетного случая нагрузки).

Самолеты оснащены двухконтурными турбореактивными двигателями, расположенными над поверхностью фюзеляжа, удаленными от крыльев и топливных баков в отдельной мотогондоле со сливом пограничного слоя. Между двигателями установлена противопожарная перегородка, одновременно являющаяся конструктивным элементом для крепления двигателей. Отсутствие пилонов для их установки и наличие коротких трасс систем запуска самолета (ВСУ также расположена в хвостовой части фюзеляжа), позволяет получить значительную экономию за счет снижения массы конструкции самолета.

Вышеуказанные преимущества позволяют получить более низкие значения расходов топлива на пассажирокилометр по сравнению с его мировыми аналогами (по расчетам ЭМЗ до 25%).

Существенно снижен шум в салоне и на местности за счет верхнего расположения двигателей, экранирования выхлопной струи сопла хвостовой частью фюзеляжа и 2-мя килями, понижен эффект эмиссии за счет снижения удельного расхода топлива.

Двигатели естественным путем защищены от попадания посторонних предметов благодаря защите их фюзеляжем.

При отказе одного двигателя создаются намного меньшие разворачивающие и кренящие моменты.

Безотрывное устойчивое течение потока на верхней поверхности фюзеляжа в широком диапазоне углов атаки (- 50 280) и скольжения ( 200) создает благоприятные условия для работы воздухозаборников двигателей.

Более короткий фюзеляж позволяет снизить риски ударов концевой его частью на этапах взлета и посадки при больших углах атаки.

С целью повышения надежности систем самолета М-60 автором разработана методика оценки и управления эксплуатационной надежностью при его эксплуатации в условиях Крайнего Севера и Арктики. На основании проведенных исследований разработаны общие положения методики оценки и управления эксплуатационной надежностью в условиях Крайнего Севера на основании поддержания в требуемом диапазоне «эффективной температуры» самолета. С целью проверки положений методики была разработана программа и организована подконтрольная эксплуатация самолетов Ту-134А Архангельского авиапредприятия. При этом выделены самолеты – представители парка с наработкой от 5000 до 9000 л.ч и от 3000 до 6000 полетов; определены экстремальные эксплуатационные условия, обусловливающие цель исследования; организованы сбор, обработка и анализ статистической информации по принятой для исследования схеме; определены режимы специальных наземных исследований с привлечением технических средств и хронометража. Материалы по результатам обработки экспериментальных данных и результаты статического моделирования, полученные теоретическим путем, сравнивались на предмет подтверждения и адекватности. Параметр потока отказов в экстремальных условиях, при направленной организации процесса технического обслуживания и оптимальной интенсивности эксплуатации самолетов, был обеспечен на уровне значений, соответствующих эксплуатации самолетов в нормальных условиях. На парке самолетов Ту-134А параметр потока отказов в условиях Архангельского авиапредприятия составлял с (tн)- 0,056 отк/ч. В результате направленной подконтрольной эксплуатации снижение уровня надежности было достигнуто до величины 0,0068 отк/ч. При этом в течение наблюдаемого года инцидентов, связанных с надежностью авиационной техники, зарегистрировано не было.

Заключение

Цель диссертационного исследования – научное обоснование условий и требований по формированию обликовых характеристик самолетов нового поколения, обеспечивающих их высокоэффективную и безопасную эксплуатацию, достигнута.

В соответствии с поставленной целью:

1. Выявлены и исследованы наиболее критические факторы риска (узкие места) при эксплуатации самолетов классической схемы:

- возрастание плотности самолетов на эшелонах используемого диапазона высот;

- высокие минимально допустимые посадочные и взлетные скорости;

- ограничение запасов размеров сложившейся аэродромной сети РФ (ВПП) и требуемой удельной нагрузки;

- незащищенность двигателей от попадания посторонних предметов;

- риск отказа (отключение) всех двигателей в полете и, при этом, существенно меньшая (по сравнению с предлагаемыми самолетами) дальность планирования;

- ограничение запаса при наборе/снижении высоты и пролете препятствий (в том числе при отказе двигателя);

- низкий уровень надежности самолета и его систем в критических условиях воздействия внешней среды;

- возникновение разворачивающего момента при отказе двигателя на взлете/посадке;

- достижение близких к предельным значений весового совершенства, аэродинамического качества и топливной эффективности у самолетов классической схемы.

2. Разработаны программа и методика, по которым проведена подконтрольная эксплуатация парка самолетов Ту-134 в условиях Крайнего Севера с целью проверки адекватности теоретических положений методики и выработанных автором рекомендаций по управлению надежностью самолетного оборудования в реальных эксплуатационных условиях.

По результатам эксплуатации в условиях оптимального сочетания управляющих эксплуатационных воздействий было обеспечено снижение параметра потока отказов с 0,056 от/ч до 0,0066 от/ч.

Решена задача оптимизации процесса технической эксплуатации парка самолетов по критерию эффективности с учетом экстремальных природно-климатических условий.

3. Разработана методология формирования облика самолетов нового поколения, основанная на моделях, методах и научно-практических положениях, позволяющих решать следующие задачи:

3.1. Управление (по критерию эффективности) надежностью систем и оборудования самолетов, эксплуатируемых в экстремальных условиях (Арктика, Крайний Север, Сибирь), построенного по результатам корреляционного анализа влияния критических эксплуатационных факторов на изменение технического состояния авиационной техники;

3.2. Снижение риска возникновения авиационного происшествия при производстве полетов в экстремальных условиях, достигаемое за счет совершенствования конструктивно-технологических свойств самолетов и всей инфраструктуры системы эксплуатации;

3.3. Оценку уровня безопасности полетов, проводимая с использованием нового универсального критерия («критерия ущерба»), обеспечивающего максимальную объективность анализа безопасности полетов. Универсальность критерия заключается в независимой комплексной оценке безопасности полетов самолетов всех классов и любого назначения;

3.4. Оптимизацию процесса технической эксплуатации самолетов по критериям эффективности с учетом экстремальных условий эксплуатации с аналитическим представлением целевой функции методом группового учета аргументов на основе регрессионного многофакторного анализа.

4. В результате исследований по разработанной методологии сформирован облик самолетов нового поколения, обеспечивающих минимальные риски возникновения авиационных происшествий при производстве полетов в экстремальных условиях за счет:

- сокращения пробега на взлете/посадке до 1200…1500 м;

- снижения допустимых взлетно-посадочных скоростей до 200 км/час;

- осуществления по крутой траектории набора высоты и снижения при пролете препятствий;

- увеличения высоты маршрутных полетов свыше 12000 м (полеты на незагруженных эшелонах);

- снижения удельной нагрузки на ВПП до 6 кг/см2 (применимость грунтовых ВПП) для региональных самолетов;

- гораздо более высокой защищенности авиадвигателей от попадания посторонних предметов;

- возможность продолжительного планирования (до 300 км) с высоты 14…15 км, достаточного для выбора площадки и безопасной посадки при отказе всех двигателей;

- отсутствия разворачивающего момента при отказе двигателя на любом этапе полета.

5. В работе получено подтверждение того, что самолеты нового поколения за счет совершенства их конструктивно-технологических и эксплуатационно-технических характеристик позволят получать экономию до 25…30% по удельному расходу топлива, снижать до 20…25% массу конструкции самолета по сравнению с лучшими мировыми образцами самолетов-аналогов, повысить комфорт для пассажиров и экипажа, успешно решать проблемы снижения шума и эмиссии в соответствии с современными требованиями и нормами стандартов и рекомендуемой практики ИКАО.

6. В качестве одного из направлений предлагается к разработке внедрению семейство самолетов М-60 экспериментального машиностроительного завода им. В.М. Мясищева, с которым автор проводил исследования с 1986 года.

В 2000 году полученные результаты исследований и разработок были запатентованы (Патент № 49560 от 19.04.2000 г.).

Данные результаты по формированию облика семейства самолетов нового поколения рекомендуются для использования при разработке и обосновании технических заданий (ТЗ) научно-исследовательскими институтами гражданской авиации.

7. С целью повышения эффективности государственного регулирования авиационной транспортной системой, оснащенной самолетами нового поколения, разработана и внедрена в Международной организации гражданской авиации (ИКАО), а также в ряде государств региона СНГ (Республике Казахстан, Кыргызской Республике, Республике Таджикистан, Азербайджанской Республике, Армении), странах Ближнего Востока и Южной Азии система авиационных правил, включающая Типовой Воздушный Кодекс, АП-ЭКС-1, гармонизированные с европейскими JAR-OPS-1 (коммерческие самолеты), АП-ЭКС-3, с европейскими JAR-OPS-3 (коммерческие вертолеты), АП-М и АП-145, с европейскими Part-M и Part-145, Руководство по производству полетов для авиакомпаний, Руководство по выдаче лицензий для авиационного персонала.

Указанная система правил соответствует стандартам ИКАО и выполнена на двух рабочих языках – русском и английском.

Публикации по теме диссертационной работы



Pages:     | 1 |   ...   | 2 | 3 || 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.