авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |

Исследование безопасности и устойчивости движения поезда по пути произвольной пространственной конфигурации

-- [ Страница 1 ] --

УДК 625.032.05 На правах рукописи













баймухамбетова мария куандыковна





Исследование безопасности и устойчивости движения поезда по пути произвольной пространственной конфигурации

05.22.06 – Железнодорожный путь, изыскание

и проектирование железных дорог

Автореферат

диссертации на соискание ученой степени

доктора технических наук

Республика Казахстан

Алматы, 2010

Работа выполнена в Казахском университете путей сообщения

Научный руководитель доктор технических наук

Солоненко В.Г.

Официальные оппоненты: доктор технических наук

Щепотин Г.К.,

доктор технических наук

Закиров Р.С.,

доктор технических наук

Исмагулова С.О.

Ведущая организация Сибирский государственный

университет путей сообщения

(г.Новосибирск, РФ)

Защита состоится 24 июня 2010 г. в 14.00 на заседании диссертационного совета Д14.64.45 в Казахском университете путей сообщения по адресу: 050063, г. Алматы, мкрн «Жетысу-1», дом 32а, ауд. 101.

С диссертацией можно ознакомиться в научной библиотеке Казахского университета путей сообщения по адресу: 050063, г. Алматы, мкрн «Жетысу-1», дом 32а, тел.: 8 727-376-74-78, факс: 376-74-81, e-mail: kups@mail.kz.

Автореферат разослан 24 мая 2010 г.

Ученый секретарь диссертационного совета А. Кайнарбеков


ВВЕДЕНИЕ


Повышение объемов грузо- и пассажироперевозок, интенсификация работы тран­спорта вызывают рост динамической нагруженности элементов системы поезд-путь. В связи с этим особую важность приобретает изучение ее динамических качеств в условиях, максималь­но приближенных к эксплуатационным, в целях выявления резервов в существующих конструкциях и определения рациональных конструктив­ных схем и параметров проектируемых подвижного состава и пути.

Усилиями многих ученых заложены основы динамики поез­да. Существенный вклад в развитие ее теории, а также методики по­ездных испытаний внесли Н.Е. Жуковский, В.А. Лазарян, С.В. Вершинский, Л.Н. Никольский, А.Л. Львов, Е.П. Блохин, А.У. Галеев, К.А. Панькин, С.В. Дувалян, П.Т. Гребенюк, Л.А. Манашкин, Л.В. Белик, О.Г. Бойчевский, Ю.М. Черкашин, Е.Л. Стамблер, Г.В. Костин, Ю.И. Першиц, а также отечественные ученые А.Д. Омаров, Э.П. Исаенко, С.М. Биттибаев, К.С. Каспакбаев, С.Е. Бекжанова, А.Т. Омарбеков, В.Г. Солоненко и другие.

В зависимости от целей исследования, основной из которых являлось определение продольных сил и устойчивости экипажей против схода с рельсов, движение поезда рассматривалось происходящим на пря­мом горизонтальном, ломаном в профиле или искривленном в плане пути. Целями исследования определя­лись рассматриваемые пространственные размерности такого движения (продольное, продольно-вертикальное, продольно-горизонтальное или пространственное) и его режим (тяга или торможение), а также учет или неучет влияния на него нелинейностей систе­мы поезд-путь (в основном продольных зазоров в межэкипажных со­единениях).

Неодинаковы, как известно, и методы исследований рассматри­ваемых движений. Некоторые из них проводились эмпирическим путем, с последующей обработкой, ана­лизом и обобщением результатов натурных экспериментов, на основа­нии которых делались выводы относительно характера протекающих в системе процессов. В ряде работ использован метод физического моделирования. Однако в последние годы исследования динамики поезда все чаще осуществляются с использованием метода математическо­го моделирования, позволяющего определять его состояния как анали­тически, так и с применением аналоговой или цифровой вычислительной техники.

К настоящему времени в исследованиях динамики подвижного со­става все большее распространение получают аналитические математические модели. Однако некоторые из таких исследований ведутся с при­менением экспериментально-статистического моделирования. Как известно, рациональность детерминистического или стохастичес­кого подхода обусловливается степенью неполноты информации.

При построении математической модели движения одним из определяющих является, как известно, вопрос о выборе расчетной схемы его объекта. Компромисс между основными характеристиками таких схем - универсальностью и эффективностью обычно достигается ми­нимальной их сложностью, обеспечивающей лишь необходимую точность решения стоящей задачи. Такой подход позволяет получить освобожденное от несущественных деталей изображение того, что наиболее важно при изучении движения. К сожалению, пока не существует универсального метода выбора оптимальной для решения конкретной за­дачи расчетной схемы системы. Поэтому составленная, как правило, ис­ходя из эвристических соображений первоначальная ее блок-схема преобразуется далее на основании либо результатов ранее проведен­ных исследований, либо из сравнения свойств нескольких схем различ­ной сложности. При этом обычно принимают следующие два вида допу­щений:

1 Допущения, уменьшающие число степеней свободы системы, например: железнодорожный путь не обладает упругими свойствами и не имеет локальных неровностей; колесные пары катятся по рельсам без проскальзывания и могут лишь вращаться вокруг сво­их осей; экипажи, включенные в состав поезда, идентичны, упругие элементы системы поезд-путь не обладают инерционными свойствами, их деформации в направлениях некоторых осей отсутствуют; отсутст­вуют взаимные перемещения отдельных элементов системы вдоль неко­торых направлений и т.п.

2 Допущения, с принятием которых сокращается число связан­ных дифференциальных уравнений, описывающих движение поезда, или упрощается их вид, например: оси галопирования кузовов экипажей совпадают с их главными центральными поперечными осями инерции; конструкции кузовов, грузов и тележек экипажей симметричны отно­сительно их главных центральных осей инерции; вводятся новые обоб­щенные координаты, позволяющие устранить или упростить динамичес­кие и (или) статические связи и т.п.

Таким образом, суть вводимых идеализаций, как видно, в ос­новном касается несущественных, второстепенных процессов и мало затрагивает изучаемые и сильно с ними связанные. Достигается это тем, что в основу выбора расчетной схемы системы кладется принцип ее разделения на подсистемы, выделения элементарных блоков и замены их динамическими аналогами с последующим синтезом обобщенной внутренней структуры.

Подход к выбору расчетной схемы поезда исторически реализовался с самого начала изучения его движения. Одним из пер­вых оно было рассмотрено русским ученым-механиком Н.Е. Жуков­ским. Для исследования одномерных продольных колебаний поезда он предложил две расчетные схемы: дискретную одномер­ную цепочку точечных масс и сплошной однородный стержень с грузом на конце. При рассмотрении вопроса об определении усилий в упряж­ных приборах, возникающих вследствие трогания поезда с места и его движения по ломаному в профиле пути, он ввел целый ряд до­пущений, что, с одной стороны, позволило довести исследование до простых аналитических выражений для искомых усилий, но с другой – придало ему известную ограниченность - возможно получение лишь верхних оценок усилий и т.д. Следующий основополагающий вклад в вопрос о выборе расчетной схемы поезда был сделан академиком В.А. Лазаряном. Исходя из анализа результатов те­оретико-экспериментальных исследований он в значи­тельной степени обобщил две основные расчетные схемы, предложенные Н.Е. Жуковским: поезд рассматривается в виде цепочки материальных точек, имитирующих экипажи, соединенные податливыми, в общем случае существенно нелинейными элементами, ли­бо в виде сплошного стержня с упругими несовершенствами и грузами, имитирующими локомотивы. Кроме того, была предложе­на третья расчетная схема поезда - в виде «стержня с сингулярной податливостью». Для всех трех схем показаны границы применимости и рациональные условия использования.

Усилия по уточнению расчетных схем экипажей как элементов поезда в соответствии с выдвигаемыми практикой задача­ми предпринимались не только школой механиков железнодорожного транспорта, созданной академиком В.А. Лазаряном, но и науч­ными коллективами Москвы, Санкт-Петербурга, Брянска, Харькова и т.д. В ряде таких исследований экипажи представлялись в виде агрегатов плоских звеньев или трехмерных твердых тел. При этом соответственно рассматривались плоские или пространственные их колебания.

В дополнение при изучении системы экипаж-путь как парциальной, по отношению к полной системе поезд-путь в ряде исследований учитывались инерционные и диссипативные свой­ства рельсошпальной решетки и основания пути, а также локальные неровности рельсовых нитей.

Движения экипажей, являясь сложными, обычно рассматриваются с использованием подвижных систем координат - плоских или пространственных. Взаиморас­положение их, как правило, определяется линейными и угловыми координатами, последние из которых составляют одну из систем типа углов Эйлера в каноническом виде, углов Брайнта, корабельных, самолетных или некоторых иных.

Для корректного определения состояния поезда не менее опре­деляющим, чем выбор расчетной схемы системы поезд-путь, является также подбор способа описания этого состояния. В зависимости от скорости протекания процессы в упомянутой системе могут носить квазистатический или динамический характер. В соответствии с этим для их описания могут применяться уравнения равновесия или движе­ния. В первом случае рассматривается равновесие поезда под дейст­вием приложенных к его экипажам сил и моментов. Такой подход, существенно упрощая исследования в относительно не­сложных случаях, когда не требуется получение закона движения си­стемы, а необходимо лишь выяснение вопроса о формах ее равновесия и оценке верхних границ возникающих сил и моментов, может дать корректное решение ряда практически важных задач. К ним относятся такие, например, как устойчивость экипажей против схода с рельсов; получение характеристик нагруженности и деформируемости элементов подвижного состава, перевозимых грузов и пути с учетом их пространственных движений; выбор или корректировка по различным критериям плана и профиля пути в их взаимосвязи; оценка динамических качеств пассажирских поездов и т.д. Поэтому проблема изучения пространственных движений поезда по пути произвольного очертания при наличии в системе существенных нелинейностей является весьма актуальной. В качестве базы для ее решения может быть предложена излагаемая в работе достаточно общая методика математического моделирования такого движения, разработанная с применением уравнений Лагранжа 2-го рода взаимоподвижных систем координат.

Актуальность проблемы. Интенсификация работы транспорта вызывает повышение динамической нагруженности элементов системы поезд-путь. Необходимость корректного решения возникающих в связи с этим задач, таких, как устойчивость экипажей в колее при движении в составе железнодорожного поезда, проектирование пути и т.д., требует в общем случае рассмотрения пространственных движений. Поэтому весьма актуальной является проблема расчета параметров таких движений поезда по пути произвольного очертания при наличии в системе существенных нелинейностей.

Целью работы является создание методики математического моделирования, создание алгоритма и программы расчетов на ЭВМ динамики системы поезд-путь с учетом пространственности движений экипажей, существенных нелинейностей, произвольности очертания пути; исследование степени и характера влияния параметров системы на продольные усилия в поезде, кинетику взаимодействия экипажей, их устойчивость против схода с рельсов.

Идея работы заключается в выработке рекомендаций по оценке продольной нагруженности экипажей и их устойчивости против схода с рельсов, а также применимости предлагаемой методики для решения ряда иных практически важных задач динамики системы поезд-путь.

В соответствии с поставленной целью и идеей в диссертационной работе решены следующие задачи:

- осуществлено математическое моделирование движения поезда по пути произвольной пространственной конфигурации;

- составлена расчетная схема системы поезд-путь;

- установлены основные кинематические соотношения системы поезд-путь;

- выведены аналитические уравнения движения поезда по пути произвольной пространственной конфигурации;

- выполнено математическое моделирование внешних воздействий на поезд;

- исследованы на ЭВМ режимы движения поезда по пути произвольной пространственной конфигурации.

Объект исследований: система поезд-путь, динамические взаимодействия экипажей при движении железнодорожного поезда по пути произвольной пространственной конфигурации.

Предмет исследований: оптимизация межэкипажных сил взаимодействия железнодорожных экипажей в системе поезд-путь при движении по пути произвольной пространственной конфигурации.

Использованные методы. В работе использован метод математического моделирования. Численное интегрирование уравнений движения системы проведено при рациональном сочетании одно- и многошагового методов с привлечением приема покоординатной индивидуализации итерационного процесса.

Научная новизна работы состоит в следующем: разработана методика математического моделирования движения железнодорожного поезда с существенными кинематическими и силовыми нелинейностями по пути произвольной конфигурации; построена одна из возможных моделей такого движения; выполнено моделирование пространственных движений межэкипажных соединений; созданы алгоритм и программа численной реализации на ЭВМ модели движения поезда; на единой модельной базе проведено исследование движений поезда по пути пространственного очертания в основных эксплуатационных режимах; проанализировано влияние главных параметров системы на продольную нагруженность экипажей, характер их взаимодействий и устойчивость против схода с рельсов; даны рекомендации по оценке нагруженности и устойчивости экипажей против схода с рельсов, а также применимости предлагаемой методики для решения ряда иных практически важных задач динамики системы поезд-путь.

Практическая ценность диссертации заключается в разработке методики (включая алгоритм и программу для ЭВМ) решения ряда задач, связанных с эксплуатацией поездов, проектированием подвижного состава и пути, а также в получении новых результатов о степени и характере влияния: колебаний экипажей и очертания пути в плане и профиле одновременно на продольную нагруженность поезда и пространственные движения его сопряжений; параметров системы поезд-путь на устойчивость экипажей против схода с рельсов; кривизны пути в плане на максимальные продольные силы в поезде; размеров окон ударных розеток на максимальные поперечные усилия в автосцепных узлах. С использованием упомянутой методики обоснована возможность определения продольной нагруженности поезда с учетом в большинстве случаев только продольных его колебаний, подтверждены рекомендации по повышению устойчивости экипажей против схода с рельсов. Предлагаемая методика может применяться для решения задач о выборе или корректировке по различным критериям плана и профиля пути в их взаимосвязи, об оценке на стадиях проектирования или модернизации параметров подвижного состава по условиям устойчивости против схода с рельсов, о моделировании движений межэкипажных соединений с целью выбора их рациональных параметров, об оценке нагруженности и деформируемости элементов подвижного состава и перевозимых грузов с учетом их пространственных движений, а также ряда иных, не менее важных задач.

Научные положения, выносимые на защиту:

- математическая модель движения поезда по пути произвольной пространственной конфигурации;

- расчетная схема системы поезд-путь для случая движения поезда по пути произвольной пространственной конфигурации;

- аналитические выражения основных кинематических соотношений системы поезд-путь;

- аналитические уравнения движения поезда по пути произвольной пространственной конфигурации;

- методика математического моделирования пространственных движений железнодорожного поезда по пути произвольной пространственной конфигурации.

Личный вклад автора:

- выполнено моде­лирование пространственных движений межэкипажных соединений;

- созданы алгоритм и программа реализации модели на ПЭВМ;

- предложе­ны приемы реализации численных методов нахождения движений систе­мы поезд-путь, рационально использующие ресурсы ПЭВМ;

- подтверждены известные выводы о путях повышения устойчи­вости экипажей против схода с рельсов;

- разработана методика изучения динамики системы поезд-путь;

- решена задача о влиянии колебаний экипажей и очертания пути (в плане и профиле одновре­менно) на кинематику межэкипажных сопряжений поезда и продольные силы в нем;

- выполнен анализ влияния основных параметров системы поезд-путь на устойчивость экипажей против схода с рельсов;

- проведена апробация методики изучения динамики системы поезд-путь сравнением построенной модели движе­ния поезда в частных случаях с известными (проверенными экспери­ментом) моделями, тестовых его движений, определенных с исполь­зованием предлагаемой и применявшейся (для исследований поезда как одномерной системы и проверенной натурным эксперимен­том) программ.

Достоверность научных положений, выводов и рекомендаций подтверждается глубоким и тщательным анализом литературных источников, корректной постановкой задачи исследования, применением математического аппарата, обработкой большого количества статистического материала и практическими результатами.

Реализация работы. Результаты выполненных теоретических исследований использованы при реализации отраслевой комплексной программы, проблемы 22.00.00 «Разработка и внедрение ресурсосберегающих технологий на железных дорогах Казахстана», в структурных подразделениях АО «НК» «КТЖ», а также внедрены в учебные процессы КУПС и КазАТК.



Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.