авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 |

Ингибирование микробиологической коррозии и наводороживания мартенситной хромоникелевой стали в натуральной и искусственной морской и океанической воде n-содерж

-- [ Страница 1 ] --

На правах рукописи

КОНДРАШЕВА ЕЛЕНА МИХАЙЛОВНА

ИНГИБИРОВАНИЕ МИКРОБИОЛОГИЧЕСКОЙ

КОРРОЗИИ И НАВОДОРОЖИВАНИЯ МАРТЕНСИТНОЙ ХРОМОНИКЕЛЕВОЙ СТАЛИ В НАТУРАЛЬНОЙ

И ИСКУССТВЕННОЙ МОРСКОЙ И ОКЕАНИЧЕСКОЙ ВОДЕ

N-СОДЕРЖАЩИМИ ГЕТЕРОЦИКЛИЧЕСКИМИ СОЕДИНЕНИЯМИ

Специальность 05.17.03 технология электрохимических процессов и защита от коррозии

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата химических наук

Калининград 2010

Работа выполнена в Российском государственном университете имени Иммануила Канта

Научный руководитель доктор химических наук, профессор,

заслуженный деятель науки РФ

Белоглазов Сергей Михайлович

Официальные оппоненты доктор химических наук, профессор

Решетников Сергей Максимович

кандидат химических наук, доцент

Слежкин Василий Анатольевич

Ведущая организация Балтийская государственная

академия рыбопромыслового флота

Защита состоится «___»______________2010 г. в ___ часов на заседании диссертационного совета К 212.084.08 при Российском государственном университете имени Иммануила Канта по адресу:

236040 Калининград, ул. Университетская, 2, аудитория № 143.

С диссертацией можно ознакомиться в научной библиотеке Российского государственного университета имени Иммануила Канта.

Автореферат разослан «___»______________2010 г.

Ученый секретарь диссертационного совета А.А. Грибанькова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. С увеличением масштабов производства машин и механизмов, с расширением применения металлических конструкций в наземных, подземных и подводных сооружениях возрастает актуальность проблемы коррозии конструкционных материалов. Мировые экономические потери от коррозионных разрушений исчисляются многими десятками миллиардов долларов в год.

Достаточно большая часть коррозионных потерь приходится на электрохимическую коррозию с участием микроорганизмов (МО) – так называемую биологическую коррозию. Одним из наиболее распространен­ных видов биокоррозии является микробиологическая коррозия, имеющая место при контакте металла с природными водами (морскими, пресными). Так разрушаются наружная обшивка судов, шлюзовые и портовые сооружения, трубопроводы системы оборотного водоснабжения и оборудование добычи и транспортировки нефти и газа, трубопроводы сточных вод нефтепромыслов, танки с льяльными водами. Причем, МО поражают металлы, пластмассы, углеводородные топлива, лаки, краски, а также бумагу, кожу и резину. В настоящее время нет такого природного или искусственного материала, не поражаемого МО. Опасность микробио­логи­ческой коррозии заключается в том, что бактерии интенсивно размножа­ются и легко приспосабливаются к изменениям физико-химических и биологических свойств среды.

В анаэробной зоне одной из наиболее важных причин коррозии металлического оборудования являются сульфатредуцирующие бактерии (СРБ). С жизнедеятельностью СРБ связывают разрушение подземных трубопроводов и сооружений, а также оборудования нефтяной промышленности. Бактерии способны ухудшать качество нефти, разрушать нефте­продукты, используя их в качестве среды для своего развития.

Сульфатредуцирующие бактерии – это физиологическая группа микроорганизмов, для которой характерна способность к образованию сероводорода из сульфатов. СРБ, являясь основным источником сероводо­рода в среде обитания человека, могут оказывать загрязняющее, отравляющее действие на ее составляющие. Сероводород, выделяемый в процессе жизнедеятельности СРБ, растворяясь в природных и техногенных коррозионных средах, облегчает про­никновение водорода в кристалличе­скую решетку стали, сопровождаю­щееся проявлением у высокопрочных сталей «водородной хрупкости». Наводороживание стали электрохимиче­ски выделяемым водородом ухуд­шает пластичность высокопрочных сталей, ведет к внезапному хруп­кому разрушению ответственных деталей, работающих в условиях дли­тельно действующих статических нагрузок и деформации, и снижает долговечность сталей при циклическом знакопере­менном нагружении. Водородное охрупчивание является серьезной проблемой в авиации, атомной энерге­тике, нефтяной и газовой промыш­ленности. Случаи разрушения деталей самолетов и вертолетов, магистральных нефтепроводов и крупных танке­ров в основном имеют причиной наводороживание металла в условиях эксплуатации.

Совершенствование мер защиты металличе­ских материалов от коррозионных и водородных разрушений остаются актуальными и явля­ются одной из основных задач исследовательской деятельности физико- хи­миков-коррозионистов.

Одним из самых распространенных способов защиты металлов от микробиологической коррозии является применение ингибиторов коррозии. Вследствие привыкания бактериальной культуры к длительно и/или интенсивно используемым биоцидам актуален поиск новых органических соединений (ОС), сочетающих высокую бакте­рицидность с эффективной ингибирующей способностью этих ОС на коррозию и наводороживание современных сталей. Изыскание новых ингибиторов коррозии и наводороживания с биоцидным эффектом в отношении СРБ и расширение их ассортимента особенно перспективно в ряду азотсодержа­щих гетероциклических соединений.

Цель работы. Целью исследований является:

– оценка влияния состава коррозионной среды на интенсивность развития СРБ, на процесс наводороживания и коррозионно-электрохимическое поведение стали 25Х13Н2 в морской воде различного происхождения;

– комплексное изучение влияния строения молекул органических веществ, принадлежащих к двум классам – производным пиримидина и замещенным сульфаниламидам – на развитие бактериальной культуры СРБ в водно-солевой среде, продуцирование микроорганизмами основного метаболита – сероводорода, и, как следствие, на редокс-потенциал и рН коррозионной среды;

– установление связи между структурой исследуемых ОС и их влиянием на скорость коррозии и интенсивность процессов наводороживания стали, экспонируемой в водно-солевой среде с СРБ;

– оценка влияния продолжительности экспозиции образцов углеродистой и хромоникелевой стали на общее водородосодержание приповерхностных слоев стали, экспонированной в водно-солевой среде с СРБ;

– оценка влияния исследуемых ОС на кинетику катодного и анодного процессов на поверхности стали 25Х13Н2 в водно-солевой среде с СРБ.

Научная новизна. 1. Установлено влияние состава водно-солевой среды: морской воды различного состава и происхождения на интенсивность развития СРБ, на изменение физико-химических свойств различных сред с сульфатредукторами, на скорость коррозии и процессы наводороживания стали 25Х13Н2, экспонируемой в рассматриваемых коррозионных средах с СРБ.

2. Получены концентрационные профили абсорбированного водорода приповерхностными слоями стали 25Х13Н2 и стали Ст3, корродиро­вавших различное время в водно-солевой среде с СРБ. Установлено, что водородосодержание образцов обеих марок стали максимально при их экспозиции в течение восьми суток в водно-солевой среде Postgate B с СРБ, что соответствует полному циклу жизнедеятельности сульфатредукторов в рассматриваемой замкнутой системе.

3. Выполнена дифференцированная оценка действия двух рядов ОС: производных пиримидина (десять веществ) и замещенных сульфамидов (шесть соединений) как ингибиторов коррозии и наводороживания стали 25Х13Н2 в H2S-содержащей водно-солевой среде с СРБ. Показана зависи­мость ингибирующего коррозию и наводороживание эффекта данных ОС от их концентрации в коррозионной среде. Продемонстрировано влияние строения ОС на эффективность ингибирования коррозии и процессов наводороживания.

4. Выяснено действие представителей двух классов ОС: производ­ных пиримидина и замещенных сульфаниламидов на бактериальный титр системы сталь 25Х13Н2 – водно-солевая среда с СРБ. Установлена связь между структурой рассматриваемых ОС и их биоцидными способностями.

5. Выявлено действие исследуемых ОС на важнейшие физико-химические параметры коррозионной среды с СРБ: концентрацию биоген­ного сероводорода, редокс-потенциал и рН. Установлено влияние строения молекул рассматриваемых ОС на интенсивность изменения этих параметров.

6. По результатам электрохимических исследований установлено, что ОС из класса замещенных сульфаниламидов способствуют снижению скорости как катодного, так и анодного процессов, происходящих на поверхности стали 25Х13Н2 в водно-солевой среде с СРБ. Это приводит к замедлению коррозионного процесса в целом, т.е. исследуемые ОС являются ингибиторами смешанного действия.

Практическая значимость работы. Анализ связи между полученными в ходе эксперимента данными о биоцидности и ингибирующей коррозию и наводороживание способности данных ОС с их структурой необходим для подбора органических веществ с целью расширения списка соединений, принадлежащих к рассматриваемым классам. Установление закономерности изменения эффективности ингибирования и биоцидности от полярных свойств заместителей позволит вести целенаправленный синтез ОС, обладающих высокими биоцидными свойствами в отношении СРБ и являющихся эффективными ингибито­рами коррозии и наводороживания в различных коррозионных средах с СРБ. Замена заместителей может быть одним из путей создания новых биоцидов. Экспериментально выявленная высокая биоцидность на СРБ таких распространенных фармацевтических препаратов, как замещенные сульфаниламиды и производные пиримидина, открывает возможности использования существующих технологических мощностей для получения дешевых ингибиторов коррозии и наводороживания с высокой биоцидно­стью на СРБ, принадлежащих к данным классам органических веществ.

На защиту выносятся следующие положения диссертации:

Установлены закономерности коррозионно-электрохимического поведения стали 25Х13Н2 в СРБ-инокулированной водно-солевой среде. Скорость коррозии стали значительно возрастает в присутствии сульфатредукторов и непосредственно зависит от бактериального титра и активности бактериальной культуры.

Установлено биоцидное действие 16 органических соединений, принадлежащих к классам производных пиримидина (десять веществ) и замещенных сульфаниламидов (шесть соединений) на жизнедеятельность микроорганизмов вида Desulfovibrio desulfuricans, развивающихся в водно-солевой среде. Соединения ЛС-41 и этазол растворимый показали лучшие биоцидные свойства в отношении данной бактериальной культуры, находящейся в замкнутой коррозионной системе: сталь 25Х13Н2 – среда Postgate B. Причем, эффективность рассматриваемых ОС в отношении СРБ возрастает с увеличением их концентрации в коррозионной среде.

Прослеживается связь между эффективностью данных ОС в отношении СРБ и уменьшением концентрации биогенного сероводорода в коррозионной среде: чем выше биоцидность ОС, тем значительнее снижается содержание H2S в системе.

Обнаружена зависимость изменения величины редокс-потенциала среды от стадии развития СРБ и количества накопленных в системе продуктов метаболизма бактерий, главным образом, биогенного сероводорода: чем интенсивнее снижается активность микроорганизмов, тем выраженнее уменьшение концентрации H2S в системе. Соответственно, превалирование окислительных или восстановительных компонентов в системе характеризует влияние вводимых в нее ОС на интенсивность метаболических процессов СРБ.

Установлено, что сообразно стадиям развития культуры сульфат­редукторов изменяются кислотно-основные свойства коррозионной среды, которые определяют соотношение форм растворенного биогенного H2S в системе, их коррозионную активность. Введение ОС в рассматриваемую коррозионную систему позволяет расширить интервал рН, в котором термодинамически устойчивы менее коррозионно-опасные формы H2S.

Выявлено, что введение ОС способствует сдвигу и удержанию физико-химических параметров системы в области значений, благоприятных для формирования на поверхности контактирующего с коррозионной средой металла плотных, хорошо сцепленных с металлической основой защитных сульфидных пленок, обеспечивающих эффективное экранирование поверхности металла от агрессивных компонентов среды и бактериальной культуры.

Выявлено снижение скорости коррозии и уменьшение абсорбции катодно-выделяемого водорода приповерхностными слоями стали 25Х13Н2 при введении ОС в коррозионную среду с СРБ. Установлено, что замещенные сульфаниламиды проявили бльшую эффективность, нежели производные пиримидина. Этазол растворимый, введенный в максимальной из рассматриваемых концентраций, показал высокие биоцидные и ингибирующие коррозию и наводороживание свойства в системе сталь 25Х13Н2 – морская вода различного происхождения с СРБ.

Установлено влияние компонентного состава коррозионной среды на развитие СРБ и процессы электрохимической коррозии и наводороживания стали при экспонировании металлических образцов в морской воде различного происхождения с микроорганизмами вида Desulfovibrio desulfuricans.

Выявлена зависимость количества абсорбированного водорода приповерхностными слоями стали от времени экспозиции металлических образцов в коррозионной среде с СРБ. Водородосодержание образцов сталей 25Х13Н2 и Ст3 максимально после их восьмисуточной экспозиции в водно-солевой среде Postgate B с СРБ, что соответствует полному циклу жизнедея­тельности сульфатредукторов в рассматриваемой замкнутой сис­теме.

Из анализа поляризационных кривых установлено, что введение исследуемых замещенных сульфаниламидов в водно-солевую среду Postgate B с СРБ способствует замедлению катодного процесса разряда ионов водорода на поверхности стали 25Х13Н2 и затруднению анодной реакции ионизации металла. Все рассматриваемые соединения проявляют свойства ингибиторов смешанного типа.

Апробация результатов диссертации. Основные положения диссертации докладывались и обсуждались на ХХIХ научной конференции профессорско-преподавательского состава, научных сотрудников, аспиран­тов и студентов КГУ (Калининград, 1998); VI Korozyon Sempozyumu (Izmir, Turkey, 1998); на международной научно-техниче­ской конференции КГТУ, посвященной 40-летию пребывания университета на калининградской земле и 85-летию рыбохозяйственного образования в России (Калининград, 1998); на ХХХ научной конференции профессор­ско-преподавательского состава, научных сотрудников, аспиран­тов и студентов КГУ (Калининград, 1999); на III всероссийской конферен­ции «Проблемы коррозии и защиты металлов» (Тамбов, 1999); на всерос­сий­ской научно-практической конференции «Экологические проблемы биодеграда­ции промышленных, строительных материалов и отходов производств» (Пенза, 2000); на международной конференции «Корозiя – 2000» (Львов, 2000); на конгрессе Европейской ассоциации коррозионистов EUROCORR–2000 (London, England, 2000); на международной научно-технической кон­ференции «70 лет КГТУ» (Калининград, 2000); на ХV международном кон­грессе Interfinish–2000 (Garmisch-Partenkirchen, Germany, 2000); на научной конференции профессорско-преподаватель­ского состава, научных сотруд­ников, аспирантов и студентов КГУ (Калининград, 2000); на 8-м междуна­родном симпозиуме Metall – Hydrogen Systems (Unaided Kingdom, 2002); на международной научной конференции «Инновации в науке и образова- нии – 2005» (Калининград, 2005).

Публикации. По материалам диссертации опубликовано 14 печатных работ.

Объем работы. Диссертация содержит 150 страниц машинописного текста, включая 90 рисунков, 2 таблицы и состоит из введения, четырех глав, выводов и 5 приложений. Список литературы включает 190 наименований работ отечественных и зарубежных авторов.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении показана актуальность выбранной темы исследования, формулируются цель работы, ее научная новизна и практическая значимость и основные положения, выносимые на защиту.

В первой главе проанализированы и обобщены литературные данные, касающиеся тематики проводимых исследований. В частности, рассмотрены характеристика сульфатредуцирующих бактерий (СРБ), их распространенность и участие в круговороте серы в природе, стадии развития СРБ и влияние физико-химических факторов на их жизнедеятельность. Рассматриваются механизм диссимиляторной сульфатредукции в анаэроб­ных условиях и роль СРБ в коррозионном разрушении металлов. Проведен обзор статей отечественных и зарубежных авторов по изучению механизма анаэробной коррозии металлов, инициированной литотрофными микроорганизмами рода Desulfovibrio. Рассматривается стимулирующее действие основного метаболита жизнедеятельности бактериальной культуры СРБ – сероводорода и продуктов коррозии – сульфидов на электрохимическую сероводородную коррозию (ЭСК) ме­таллов. Обобщены имеющиеся литературные данные о наводороживании металлов в процессе СРБ-инициированной коррозии. Рассмотрены основ­ные способы защиты металлов от микробиологической коррозии. Особое внимание уделено механизму ингибирующего действия органических соединений (ОС) на ЭСК металлов и процесс абсорбции катодно-выделяе­мого водорода приповерхностными слоями стали в ходе микробиологиче­ской коррозии под действием СРБ. Акцентировано внимание на биоцидных свойствах ингибиторов коррозии. Основываясь на публикациях последних лет, подробно рассмотрены примеры бактерицидов, применяемых в современной промышленности для защиты металлов и сплавов, эксплуатируе­мых в анаэробной зоне, от СРБ-инициированной коррозии.

Во второй главе описаны объекты и методы исследований.

В качестве металлического материала использовали образцы, изготовленные из шлифованного прутка коррозионно-стойкой стали мартенситного класса марки 25Х13Н2 (ГОСТ 18907-73, ТУ 14-1-721-73). Средой для коррозионных испытаний в лабораторных условиях служила водно-солевая среда Постгейта «Б» (П «Б»), инокулированная культурой СРБ вида Desulfovibrio desulfuricans, выделенной из природного источника (из иловых отложений). Накопительную культуру бактерий, которая характеризуется продуцированием большого количества сероводорода и высокой устойчивостью к действию бактерицидов, получали, следуя анаэробной технике культивирования, методом предельных разведений на жидкой минеральной среде Postgate B.

В качестве разбавляющего материала использовалась натуральная, а также стерилизованная океаническая и морская вода Балтийского моря (ВБМ; ВБМ(ст.)) и Атлантического океана (ВАО; ВАО(ст.)), искусствен­ная морская вода двух составов: 1) общепринятый простейший имитат – 3%-й раствор NaCl и 2) уравновешенный по 70 элементам состав (ВТМ), приготовленный на основе искусственной соли TROPIC MARIN (произво­дитель – Dr. Biener GmbH Aquarientechnik, Wartenberg, Germany).



Pages:   || 2 | 3 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.