авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 3 | 4 ||

Регулирование свойств синтетических волокон, нитей, тканей и композиционных материалов на их основе с помощью неравновесной низкотемпературной плазмы

-- [ Страница 5 ] --

Согласно приведенным микрофотографиям можно отметить, что контрольный образец исходного СВМПЭ волокна (рис. 5а) обладает неоднородной структурой поверхности с явно заметными неровностями, образованными светлыми, псевдосферическими объектами, размером не более 50 мкм, количество которых значительно превышает число аналогичных объектов для обработанных образцов. На отдельных участках волокна наблюдаются зоны дефектности в виде трещин. Совершенно отличная от исходного волокна, структура поверхности образца, обработанного в смеси газов аргон – пропан-бутан (рис. 5б), где наблюдается однородная поверхность волокон, без видимых дефектов. Поверхность отдельных волокон образца, обработанного в аргон-азоте (рис. 5в) имеет зоны с явно выраженной дефектностью, при больших увеличениях отчетливо наблюдаются светлые трещины, данный дефект не распространяется на всю поверхность волокна, а имеет локальный характер. При обработке в аргоне (рис. 5г), размер светлых включений на поверхности волокон достигает 35 мкм; дефектность в виде трещин не локализована и может наблюдаться на всей протяженности поверхности волокна. Структура поверхности близка к контрольному образцу, но трещины не ярко выражены.

Исследование изменений нанокристаллической структуры СВМПЭ волокон голландского и китайского производства проводилось методом РСА, в т.ч. малоуглового рассеяния. Для всех образцов после обработки в ВЧЕ-разряде пониженного давления, плазмообразующий газ аргон, появляются слоевые линии первого рода, что свидетельствует о более высокой степени упорядочения кристаллитов вдоль оси растяжения после ННТП обработки.

С помощью методов РСА установлено, что для образцов китайского производства, имеющих изначально менее совершенную наноструктуру, по сравнению с голландским волокном, характерно увеличение толщины ламеллей и уменьшение большого периода после ННТП воздействия (с 35.0 до 32.0 нм). Для образцов SK-75 наблюдается незначительное уменьшение толщины кристаллических ламеллей и небольшое увеличение большого периода после плазменной обработки, т.е. ННТП обработка способствует упорядочению наноструктуры, более выраженному в случае обработки изначально менее упорядоченных структур.

Для изучения химического состава и строения контрольных и модифицированных в ВЧЕ разряде пониженного давления образцов ПЭФ волокон и ПА нитей использовали методы ИК Фурье- спектроскопии. При обработке ПЭФ волокон ННТП плазмой в оптимальном режиме происходит некоторое смещение основных полос, характерных для ПЭФ. Появляется группа полос с выраженным пиком при 1522 см-1, которую можно отнести к кетонам или дикетонам. Образование кетонов в условиях ННТП обработки в аргоне, вероятно, возможно за счет разрыва сложноэфирной группировки и, в ряде случаев, за счет разрушения простой эфирной связи. После обработки ННТП плазмой, аналогично полиолефиновым волокнам, на поверхности ПЭФ волокна возникают долгоживущие свободные радикалы, которые после обработки взаимодействуют с кислородом воздуха, в результате чего на поверхности образца появляются дополнительные активные функциональные –С=О группы. Также происходят изменения в ИК-спектрах при обработке ПА волокон в оптимальном режиме в среде азота, где сглаживаются пики в 1415 см-1 и 1474 см1. При более интенсивной обработке происходят изменения в пике 1543 см-1, который становится триплетом, ответственном за структуру основного звена ПА. В случае использования плазмообразующего газа азота, он вступает в химические взаимодействия с образовавшимися при ионной бомбардировке отрезками цепи в поверхностном нанослое, в результате на поверхности волокон формируются новые полярные азотсодержащие группировки. Такие изменения объясняют активацию поверхности ПЭФ волокон и ПА нитей и повышение прочности связи с резиной.

При исследовании ПЭФ корда методом ТГА обнаружено, что у обработанного в плазме аргона образца температура начала деструкции и температура полной деструкции на 240С и на 120С соответственно ниже, чем у необработанного плазмой ПЭФ. Различается также характер кривых ДСК. У ПЭФ корда, подвергшегося плазменной обработке, при температуре 3590С наблюдается экзотермический пик, который можно связать с процессами окисления в отличие от необработанного ПЭФ, для которого в этой температурной области экзотермический пик выражен незначительно. Изменения кривых ДСК и ТГА указывают на протекание окислительных процессов в поверхностном нанослое ПЭФ волокон, что сказывается на снижении прочности волокон после ННТП обработки.

На кривых ДСК ПА нити, обработанной ННТП, при температуре выше 3000С наблюдается изменение экзо- и эндотермических пиков по сравнению с необработанным волокном. Для обработанного образца в температурной области от 3500С до 4250С происходит смещение пиков. Экзотермический пик при температуре 4570С, отвечающий за процессы окисления, имеет, в отличие от необработанной ПА нити, четко выраженный характер. Различие кривых ДСК исходной и модифицированной ПА нити говорит об изменениях структуры, однако в данном случае окислительные процессы в поверхностном нанослое не столь значительны, как для ПЭФ волокон, в результате прочность нити падает не существенно.

Установленные изменения поверхностных, физико-механических и термических свойств синтетических волокон и нитей и обнаруженные структурные превращения подтверждают механизм модификации поверхностного нанослоя, заявленный в главе 2.

Бомбардировка ионами с энергией до 100 эВ приводит к возникновению в поверхностном нанослое синтетических волокон и нитей свободных радикалов, которые, реагируя с активными компонентами плазмы, могут образовывать гидрофильные группы, что объясняет значительное увеличение смачиваемости при использовании смесей газов аргон-воздух, аргон-азот. Процессы окисления и азотирования протекают более интенсивно при обработке химически активными газами гетероцепных полимеров, содержащих в цепи атомы кислорода и азота.

При обработке в среде инертного газа аргона приоритетными становятся процессы взаимодействия радикалов между собой с образованием поверхностных сшивок, одновременно происходят конформационные изменения, приводящие к упорядочиванию наноструктуры, что способствует упрочнению волокон и нитей и повышению термостойкости. Улучшение поверхностных свойств происходит как за счет удаления посторонних включений в процессе ионной бомбардировки и создания рельефа поверхности, так и разрыхления филаментов в случае межмолекулярного попадания ионов аргона. Кроме того, за счет низкоэнергетической ионной имплантации в поверхностном нанослое образуются долгоживущие радикалы, способные и реагировать с кислородом воздуха при выносе образцов из реакционной камеры, с образованием –С=О групп. Это объясняет некоторое снижение смачиваемости синтетических волокон и нитей в аргоне по сравнению с обработкой в среде аргон-воздух, аргон-азот и более высокие показатели прочности. При обработке в плазмообразующем газе аргон – пропан-бутан существует вероятность прививки мономерных звеньев и осколков молекул пропан-бутана к возникающим свободным радикалам, образованию дополнительных мостиков и сшивок, что приводит к сглаживанию поверхности, значительно снижает количество свободных радикалов по окончании обработки, способствует заметному возрастанию прочности и термостойкости и незначительному повышению смачиваемости.

В случае ПЭФ волокон и ПА нитей наблюдаются более существенные структурные изменения, связанные с наличием гетероатомов в основной цепи полимера. Даже при использовании инертных газов процессы травления и изменения структуры поверхностного нанослоя более выражены, чем в случае карбоцепных полиолефиновых волокон, что приводит к снижению физико-механических характеристик. С другой стороны, выделение сопутствующих газов в процессе модификации нанослоя делает возможным плазмохимические реакции и прививку функциональных групп в ходе обработки, что значительно повышает адгезионную способность текстильных кордов к резине.

Следовательно, в результате ионной бомбардировки после обработки синтетических волокон, нитей и тканей ВЧЕ разрядом пониженного давления происходят как конформационные превращения, так и изменения химического состава поверхностного нанослоя (формирование функциональных групп) и его структуры. Наиболее выражены изменения при обработке волокон и нитей на основе гетероцепных волокнообразующих полимеров химически активными плазмообразующими газами.

В шестой главе разработаны рекомендации и приведена схема технологической последовательности производства синтетических волокон, нитей, тканей с использованием плазменной обработки, а также разработана методика закрепления наночастиц серебра на волокнистых материалах и создания КМ на основе СВМПЭ волокон и тканей. Разработана полупромышленная плазменная установка для обработки синтетических волокон и нитей в ВЧЕ разряде пониженного давления.

Плазменная обработка синтетических волокон, нитей и тканей позволяет активировать их поверхность, понижая поверхностное натяжение и повышая адгезионную способность волокнистых материалов, а также позволяет улучшить их физико-механические и термические показатели.

На основе полученных экспериментальных данных обработки полипропиленовой пленочной нити потоком плазмы ВЧе разряда пониженного давления, в технологический процесс получения ПП пленочной нити рекомендуется включить ННТП обработку в режиме Ua = 3,5 кВ, Ja = 0,3 А, G = 0,04 г/с; P = 26,6 Па;  = 180 с, плазмообразующий газ аргон – пропан-бутан в соотношении 70:30 (рис. 6).

В процессе обработки ПП пленочной нити с помощью низкотемпературной плазмы пониженного давления, в режиме Ua = 3,5 кВ, Ja = 0,3 А, G = 0,04 г/с; P = 26,6 Па;  = 180 с, плазмообразующий газ аргон – пропан-бутан в соотношении 70:30, получены нити, на 15% более прочные по сравнению со стандартной технологией. За счет увеличения прочности нитей можно сократить расход исходного ПП сырья, оставляя прочностные показатели готовой упаковочной продукции на прежнем уровне, что положительно сказывается на ее себестоимости.

Модификация ПП нити по той же схеме в плазмообразующем газе аргон-азот (режим Uа = 4,5 кВ; Jа = 0,3 А; Р = 26,6 Па; G = 0,04г/с; = 180 сек) повышает смачиваемость нити в 4 раза, что позволяет достигать устойчивого окрашивания поверхности ПП текстильной мешкотары.

Рис. 6. Схема технологии получения ПП пленочной нити с использованием ВЧ плазмы пониженного давления.

Аналогичная технологическая схема непрерывного процесса (рис. 6) предложена для получения плазмоактивированных ПП, ПЭФ и СВМПЭ волокон и ПА нитей.

Для увеличения адгезии кордных ПЭФ волокон и ПА нитей к резине рекомендуется применение ВЧЕ-плазменной обработки для ПЭФ режим: Jа = 0,5 А, Uа = 2 кВ, P = 26,6 Па, GAr = 0,04 г/с, = 3 мин; для ПА режим: Jа = 0,5 А, Uа = 2 кВ, P = 26,6 Па, GN2 = 0,04 г/с, = 3 мин, что приводит в случае ПЭФ к росту величины адгезионной прочности бесклеевой связи резины с кордом на 225 %, в случае ПА на 50 %.

В производстве СВМПЭ волокон предлагается производить обработку ВЧЕ разрядом в режиме Ua = 5 кВт, Ja = 0,7 А, Р = 26,6 Па, GAr = 0,04 г/с,  = 180 с, с целью их модификации для улучшения адгезии волокон к полимерной матрице и получения высокопрочных КМ. Такая обработка позволяет повысить прочность соединения СВМПЭ волокон и тканей с матрицей до 3 раз.

В качестве альтернативной технологии плазменная обработка предложена в качестве финишной обработки, после намотки готовых волокон и нитей на бобины. В производстве СВМПЭ тканей предлагается производить обработку готовых тканей, раскроенных под изделие заказчика, ВЧЕ разрядом в режиме Ua = 5 кВт, Ja = 0,7 А, Р = 26,6 Па, GАr = 0,04 г/с,  = 180 с.

Разработана полупромышленная установка ВЧЕ-разряда, позволяющая модифицировать синтетические волокна, нити и ткани. Характеристики плазменной установки: объем вакуумной камеры - 4м3, рабочее давление в камере - 10 – 100 Па, скорость откачки до рабочего давления - 7мин, размеры электродов - 1500х700 мм, высокочастотный генератор ВЧГ8-60/13, колебательная мощность - 60 ± 6 кВт, рабочая частота - 13,56 ± 0,13МГц, производительность установки (по ткани) - 100м2/сут.

Разработана методика модификации ПП волокон наночастицами серебра с применением ННТП пониженного давления:

    1. Обработка ПП волокон аргоновой плазмой в Ua = 3,5 кВ; Ja = 0,4 А; Р = 26,6 Па; G = 0,04 г/с;  = 240 с, плазмообразующий газ аргон;
    2. Пропитка плазмоактивированных волокон коллоидным раствором наночастиц серебра «Бион-2» концентрации 10 г/л;
    3. Сушка волокон в сушильном шкафу при 80С в течении 60 с.
    4. Повторная обработка ПП волокон в гидрофильном режиме.

Данная методика позволяет устойчиво закреплять на поверхности ПП волокна наночастицы серебра, не допуская их агрегации, что необходимо для использования данных видов волокон при производстве фильтров с антисептическими свойствами.

Выводы:

1. Разработаны научные основы создания синтетических волокон и нитей с новыми свойствами, на базе физико-химической и математической моделей процессов, проходящих в поверхностном нанослое волокон и нитей при обработке ВЧЕ-разрядом пониженного давления. Установлено, что наибольший эффект в модификацию наружной поверхности волокнистых материалов вносит ионная бомбардировка, с образованием слоя захороненных атомов плазмообразующего газа. Это позволяет изменять конформацию волокнообразующего полимера, упорядочивать его наноструктуру, без конфигурационных изменений, удалять посторонние включения и изменять структуру поверхности, сглаживая, разрыхляя ее или формируя на ней функциональные группы, без деструкции обрабатываемых материалов.  

2. ВЧЕ плазменная обработка ПП пленочной нити позволяет регулировать поверхностные свойства и улучшать физико-механические показатели, за счет структурирования нити и образования поверхностной сетки. Смачиваемость поверхности ПП нити возрастает в 4 раза (плазмообразующий газ аргон-азот), что позволяет достигать устойчивого окрашивания поверхности ПП текстильной мешкотары. Прочность нити повышается на 15% (плазмообразующий газ - аргон-пропан-бутан), что позволяет понизить себестоимость или повысить качество ПП мешкотары, снижая обрывность нити при ткачестве.

3. Плазменная обработка позволяет осуществлять пропитку ПП волокон раствором наночастиц серебра за счет гидрофилизации поверхности, а повторная обработка в ВЧЕ разряде пониженного давления способствует их устойчивому закреплению без агрегации. Разработана методика модификации ПП волокон и получен новый фильтрующий материал с антисептическими свойствами.

4. Получены двух и трехфакторные уравнения регрессии, адекватно описывающие влияние параметров плазменной обработки на капиллярные свойства СВМПЭ волокон и тканей, которые позволяют прогнозировать значения капиллярности и устанавливать оптимальные режимы для получения заданных свойств.

5. Обработка СВМПЭ волокон в ВЧЕ разряде пониженного давления, плазмообразующий газ – аргон, способствует приданию поверхности гидрофильных свойств за счет формирования долгоживущих свободных радикалов и образования функциональных групп после обработки. Определено, что смачиваемость на воздухе эпоксидной матрицей возрастает на 86%, при этом прочность сцепления волокна с матрицей повышается как минимум в 2 раза. Получены образцы лёгкого (плотность не более 1,1 г/cм3), высокопрочного КМ, превосходящего по удельной прочности металлы в 6-7 раз, стеклопластики в 2 раза, а углепластики в 1,5 раза.

6. Определены параметры плазменной обработки, позволяющие улучшать термические характеристики СВМПЭ волокон. Температуры начала процесса интенсивной термодеструкции при обработке в оптимальном режиме, в смеси газов аргон - пропан-бутан, повышается на 600С. Температура начала потери массы при обработке в смеси газов аргон-азот возрастает на 300С. Это позволяет повысить температуру эксплуатации КМ на основе данных волокон.

7. Обработка ВЧЕ разрядом пониженного давления позволяет регулировать поверхностное натяжение шинных ПЭФ и ПА кордов, за счет образования новых полярных группировок на поверхности корда. Адгезионные показатели в бесклеевой системе резина – корд возрастают для ПЭ на 225 %, для ПА на 50 %, что позволяет исключить применение адгезивов и способствует повышению износостойкости шинной продукции.

8.  Разработана энерго- и ресурсосберегающая технология, методики и оборудование для плазменной обработки в процессах: а) получения ПП нитей с улучшенными поверхностными или физико-механическими свойствами, б) получения фильтрующих материалов на основе ПП волокон с антисептическими свойствами, в) модифицикации СВМПЭ волокон и тканей для создания сверхлегких высокопрочных КМ на их основе, г) получения новых текстильных ПЭФ и ПА кордов с повышенной адгезионной способностью к резине.

Выражаю благодарность д.т.н., профессору Л.А. Зенитовой за участие в обсуждении результатов, аспирантке Д.И. Фазыловой за помощь в проведении экспериментов по ПЭФ волокнам и ПА нитям.

Основное содержание работы изложено в следующих публикациях:

Статьи в ведущих рецензируемых научных журналах, рекомендуемых ВАК РФ, монография.

  1. Сергеева, Е.А. Наполнение литьевых полиуретанов твердыми отходами нефтехимических производств / Е.А. Сергеева [и др. ] // Журнал прикладной химии. - 2002. – Т. 75. – Вып. 6. - С. 1019-1023.
  2. Сергеева, Е.А. Влияние высокочастотного разряда пониженного давления на свойства ВВПЭ волокон / Е.А. Сергеева, И.Ш. Абдуллин // Вестник Казанского технологического университета. – 2009. - №2. - С. 84-89.
  3. Сергеева, Е.А. Повышение прочности соединения волокон ткани из сверхвысокомолекулярного полиэтилена с матрицей при получении композиционных материалов / Е.А. Сергеева, И.Ш. Абдуллин // Дизайн. Материалы. Технология. – 2009. - № 2 (9).- С 11-14.
  4. Абдуллина, В.Х. Гидрофилизация полипропиленовой пленочной нити низкотемпературной плазмой пониженного давления / В.Х. Абдуллина [и др.] // Известия вузов. Технология текстильной промышленности. – 2009. – № 4С(319) – С. 129-131.
  5. Сергеева, Е.А. Влияние термообработки на свойства высокопрочных высокомодульных полиэтиленовых волокон при создании композиционных материалов / Е.А. Сергеева, И.Ш. Абдуллин, К.Э. Разумеев // Швейная промышленность. – 2009. - №3. - С.48-49.
  6. Абдуллина, В.Х. Влияние плазмоактивации на фиксацию наночастиц серебра на поверхности полипропиленового волокна / В.Х. Абдуллина [и др.] // Вестник Казанского технологического университета. – 2009. – № 3. – С. 53 - 56.
  7. Сергеева, Е.А. Активация нанокристаллических полиэтиленовых волокон неравновесной низкотемпературной плазмой / Е.А. Сергеева, И.Ш. Абдуллин // Нанотехника. – 2009. - №2(18). - С. 12-15.
  8. Сергеева, Е.А. Влияние плазменной обработки на структуру и свойства высокомодульных полиэтиленовых волокон / Е.А. Сергеева // Вопросы материаловедения. – 2010. - №2(62). – С.51-57.
  9. Сергеева, Е.А. Регулирование свойств полиолефиновых волокон и нитей с помощью неравновесной низкотемпературной плазмы / Е.А

    Pages:     | 1 |   ...   | 3 | 4 ||
     





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.