авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 5 |

Регулирование свойств синтетических волокон, нитей, тканей и композиционных материалов на их основе с помощью неравновесной низкотемпературной плазмы

-- [ Страница 2 ] --

Результаты диссертационной работы внедрены на предприятиях ЗАО «Казанский Текстиль» и ООО «Полиэтиленпластик» (г. Казань), имеются акты внедрения. При выпуске полипропиленовой пленочной нити на ЗАО «Казанский текстиль» по предлагаемой технологии экономический эффект за счет сокращения расходов на исходное полипропиленовое сырье составил 5 млн. руб. в год (в ценах 2008г.).

На защиту выносятся.

1. Научные основы регулирования свойств синтетических волокон, нитей, тканей и КМ с помощью ННТП, базирующиеся на разработанных физико-химической и математической моделях процесса модификации поверхности синтетических волокон и нитей в ВЧЕ-разряде пониженного давления.

2. Результаты исследований химического состава и структуры синтетических волокон, нитей и тканей после обработки ННТП, свидетельствующие, что низкоэнергетическая ионная бомбардировка приводит к изменению конформации макромолекул волокнообразующего полимера, упорядочению наноструктуры, образованию свободных радикалов, в том числе долгоживущих, в поверхностном нанослое волокон и нитей, а также модификации структуры поверхности, сглаживая, разрыхляя и формируя на ней функциональные группы (в зависимости от вида плазмообразующего газа), что позволяет создавать синтетические волокна и нити с новыми свойствами.

3. Результаты экспериментальных исследований воздействия ВЧЕ плазменной обработки с применением различных плазмообразующих газов на значение краевого угла смачивания поверхности ПП пленочной нити, свидетельствующие об изменении гидрофильных свойств ПП нити; усилении при обработке в смеси плазмообразующих газов аргон – пропан-бутан гидрофобных свойств и возрастанию прочности ПП нити на 15%.

4. Результаты исследований модификации ПП волокна коллоидным раствором наночастиц серебра с применением ННТП, позволяющие установить оптимальный режим и методику плазменной обработки для устойчивого закрепления наночастиц на поверхности фильтрующих материалов и придания им антисептических свойств.

5. Результаты экспериментальных исследований влияния потока плазмы ВЧЕ разряда пониженного давления на поверхностные свойства СВМПЭ волокон и тканей, а также физико-механические свойства КМ на их основе и оптимальный режим ННТП обработки, позволяющий повысить смачиваемость на воздухе СВМПЭ волокон эпоксидной матрицей на 86%, а прочность соединения волокна или ткани с матрицей минимум в 2 раза, прочность КМ на изгиб в 2-3 раза.

6. Экспериментальные данные улучшения термических характеристик СВМПЭ волокон и тканей, устанавливающие повышение температуры начала процесса интенсивной термодеструкции на 600С (плазмообразующий газ аргон 70%, пропан-бутан 30%), температуры начала потери массы на 300С (аргон 70%, азот 30%).

7. Экспериментальные данные повышения прочности соединения ПЭФ и ПА текстильных кордов с резиной в результате обработки в ВЧЕ-разряде пониженного давления и оптимальные режимы, способствующие активации их поверхности и повышению прочности связи с резиной ПЭФ корда в 3,25 раза и ПА корда в 1,5 раза.

8. Энерго- и ресурсосберегающая технология, методики и оборудование для плазменной обработки в процессах: а) получения упрочненной ПП нити, б) модификации фильтрующих материалов из ПП волокон наночастицами серебра, в) создания сверхлегких высокопрочных КМ на основе модифицированных СВМПЭ волокон и тканей, г) получения новых текстильных ПА и ПЭФ кордов с активированной поверхностью.

Апробация работы и публикации. Результаты работы докладывались и обсуждались на ХII международной конференции молодых ученых «МКХТ-98» (Москва, 1998), IX конференции «Деструкция и стабилизация полимеров» (Москва, 2001), научно-технической сессии КГТУ (Казань, 2001, 2002), V и VI международной научно-практической конференции студентов и молодых ученых “Новые технологии и материалы легкой промышленности” (Казань, 2009, 2010), международной конференции EuroNanoForum2009 (Прага, 2009), международной конференции “Перспективные технологии, оборудование и аналитические системы для материаловедения и наноматериалов” (Москва, 2009), XIII международной конференции молодых ученых, студентов и аспирантов «Кирпичниковские чтения» (Казань, 2009), научно-технической конференции «Низкотемпературная плазма в процессах нанесения функциональных покрытий» (Казань, 2009), X международной научной конференции «Нанотех-2009» (Казань, 2009), XXXVII международной (Звенигородской) конференции по физике плазмы и УТС (Звенигород, 2010), международной научно-технической и образовательной конференции «Образование и наука производству» (Н. Челны, 2010), международной научно-технической конференции «Инновационность научных исследований в текстильной и легкой промышленности» (Москва, 2010).

Основные результаты работы изложены в 68 публикациях, в том числе 1 монографии и 18 статьях в изданиях, рекомендованных ВАК РФ.

Личный вклад автора в опубликованных в соавторстве работах состоит: в выборе и обосновании методик экспериментов; непосредственном участии в проведении экспериментов; анализе и обобщении полученных экспериментальных результатов, построении физико-химической и математической моделей, в разработке технологических процессов с применением ВЧЕ плазмы пониженного давления, улучшающих поверхностные, физико-механические и термические свойства волокон, нитей, тканей и КМ на их основе. Вклад автора является решающим на всех стадиях работы.

Структура и объем работы. Диссертация состоит из введения, шести глав, выводов и приложений. В тексте приведены ссылки на 449 литературных источника. Работа изложена на 363 страницах машинописного текста, содержит 153 рисунка, 65 таблиц.

Содержание работы

Во введении обосновывается актуальность диссертационной работы, определены цели, намечены задачи для их достижения, показана научная новизна и практическая значимость полученных результатов, приводится структура диссертации.

В первой главе рассмотрены тенденции рынка синтетических волокон и нитей, изучены особенности их структуры и свойств. Представлен анализ химического состава, строения и свойств синтетических волокон и нитей, в т.ч. полиолефиновых (ПП и СВМПЭ), а также ПЭФ и ПА волокон и нитей. Показаны возможности использования синтетических волокон, нитей и тканей в качестве армирующего наполнителя при создании полимерных КМ. Рассмотрены современные способы модификации волокнистых материалов, в том числе электрофизические. Обоснована возможность применения ННТП с целью модификации синтетических волокон, нитей и тканей для улучшения их физико-механических свойств и активации поверхности. Показан подход к изучению внутри- и межмолекулярных изменений в структуре волокон и нитей, путем представления структурных элементов макромолекул в виде нанообъектов. Сформулированы основные задачи работы.

Во второй главе охарактеризованы структура и свойства исследуемых синтетических волокон и нитей, рассмотрены особенности взаимодействия ННТП с материалами. Разработаны научные основы регулирования свойств синтетических волокон, нитей, тканей и КМ материалов на их основе ВЧЕ разрядом пониженного давления, на базе физико-химической и математической моделей воздействия ННТП на синтетические волокнистые материалы.

Физико-химическая модель взаимодействия ВЧ плазмы пониженного давления с синтетическими волокнистыми материалами подробно рассмотрена на примере СВМПЭ волокон, обработанных в плазме инертного газа - аргона. Волокна СВМПЭ состоят из 210-240 филаментов диаметром от 17 до 22 мкм, тогда как поперечный размер молекулы СВМПЭ составляет 4,46 , что на 4 порядка меньше диаметра филамента. Поэтому будем считать, что филамент СВМПЭ волокна представляет собой многослойную конструкцию, в которой в продольном направлении располагаются соответственное количество макромолекулярных цепей.

При взаимодействии ВЧ плазмы с поверхностью филаментов СВМПЭ на нее могут воздействовать следующие факторы:

1) передача кинетической энергии ионов плазмообразующего газа (30-100 эВ);

2) рекомбинация иона Ar+ с электроном на поверхности ПЭ; при этом выделяется энергия 15,76 эВ, затраченная на ионизацию атома аргона в плазме и образуется быстрый атом Ar;

3) рекомбинация иона Ar+ с электроном, эмитированным с поверхности СВМПЭ под влиянием электрического поля иона; в результате образуется бы­стрый атом Ar, молекула СВМПЭ ионизируется;

4) низкоэнергетичная имплантация ионов Ar+ в приповерхностный слой с образованием активных центров;

5) воздействие ультрафиолетового излучения;

6) передача кинетической энергии нейтральных и возбужденных атомов (0,025-0,035 эВ);

7) гашение возбужденных состояний атомов плазмообразующего газа (5-10 эВ);

8) термическое воздействие.

Анализ показал, что в диапазоне параметров плазмы: давления плазмообразующего газа (Р) 13,3-133 Па, расхода газа (G) до 0,2 г/с, напряжения на аноде (Ua) 1,5-7,5кВ, силы тока на аноде (Ja) 0,3-0,7 А и частоты поля 13,56 МГц, основными воздействующими факторами являются передача кинетической энергии ионов плазмообразующего газа и их рекомбинация.

Как известно, любое тело в плазме приобретает отрицательный заряд. В ВЧ плазме пониженного давления, оно становится дополнительным электродом, вследствие чего у поверхности тела образуется слой положительного заряда (СПЗ) толщиной до 2 мм. За счет образования СПЗ формируется поток низкоэнергетических ионов, которые бомбардируют поверхность полимера с энергией 30-100 эВ и обеспечивают модификацию нанослоя с образованием слоя c захороненными атомами Ar. В результате возникают долгоживущие активные центры, способные взаимодействовать с кислородом воздуха после ННТП обработки, что приводит к образованию функциональных групп и приданию поверхности гидрофильных свойств. Одновременно происходит упорядочение структуры нанослоя, образование поверхностной сетки, сглаживание поверхности (при использовании полимеробразующей плазмы), что является причиной повышения физико-механических свойств и термостойкости.

Дополнительное разрыхление филаментов волокна, в ряде режимов плазменной обработки, при межмолекулярном попадании низкоэнергетических ионов и возникновении напряженных состояний в поверхностном слое, увеличивает его активность и способствует повышению связи СВМПЭ волокон с полимерными матрицами. Кроме того, низкоэнергетическая бомбардировка ионами плазмообразующего газа, единственная способна удалять посторонние включения из синтетических материалов, формируя рельеф нанослоя без деструкции материала, за счет избирательного травления, что также приводит к увеличению площади активной поверхности.

Так как типичные времена релаксации атомных состояний составляют порядка 10-13 с, а время между попаданиями одного иона аргона в одну точку на поверхности составляет 0,06 – 0,2 с, то эффект кумуляции воздействия на поверхность различных ионов отсутствует.

На основе разработанной физико-химической модели построена математическая модель воздействия ВЧ плазмы пониженного давления на филаменты СВМПЭ, при следующих предположениях.

Взаимодействующие частицы (Ar+, атомы углерода и водорода) рассмат­риваются как шары известного радиуса. Молекулярные цепочки располагаются в нескольких параллельных плоскостях. Учитывая огромную разницу между энергией налетающей частицы (Ar+) и энергией молекулярных и межмолекулярных связей, в первом приближении пренебрежем изменениями углов внутреннего вращения, валентных углов и длины связей в основной цепи. Будем считать, что если энергия, сообщаемая одним атомом другому, превышает энергию связи, то эта связь рвется. Так как время релаксации много меньше времени попадания следующего иона, то сохранение свободных радикалов происходит за счет низкоэнергетической ионной имплантации.

Математическая модель в простейшем случае описывается системой уравнений движения каждой из взаимодействующих частиц,

(1)
.


Pages:     | 1 || 3 | 4 |   ...   | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.