авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 5 |

Устойчивость и агрегация низкоконцентрированных водных дисперсий технических лигнинов, выделенных при переработке древесного сырья

-- [ Страница 2 ] --

Личный вклад автора состоит в обосновании цели и формулировке задач исследования, постановке, участии и проведения исследований, как непосредственно автором, так и в соавторстве при выполнении и руководстве работ в рамках программ Минобразования, дипломных, магистерских и кандидатских диссертаций. Анализ и обобщение комплекса экспериментальных данных принадлежат автору работы.

Структура и объем диссертации. Диссертационная работа содержит 379 страниц машинописного текста, 137 рисунков, 16 таблиц и состоит из введения, 3 глав, общих выводов, библиографического списка использованной литературы из 340 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Введение содержит обоснование актуальности темы диссертации, краткую характеристику научной и практической значимости диссертационной работы.

Первая глава обзор литературы – посвящена современным представлениям о строении лигнина in situ и выделенных технических лигнинов, при использовании различных способов делигнификации. Рассмотрены их макромолекулярные и коллоидно-химические свойства. Приведен сравнительный анализ этих данных и на основе этого сформулированы цель и задачи исследования.

Вторая глава посвящена описанию объектов и методов исследования. В качестве основного объекта исследования выбран СЛ, представляющий собой среднюю пробу опытно-промышленной партии. Лигнин осаждался из отработанного черного щелока подкислением серной кислотой. Для оценки достоверности полученных результатов при исследовании коллоидно-химических свойств водной дисперсии СЛ и выводов, сделанных на основе этих исследований, были проведены исследования ряда свойств для различных образцов СЛ. Для этих лигнинов в работе приведены аналитические и спектральные свойства (рис.1).

Навеску СЛ растворяли в 0,1 Н NаОН, выдерживали в течение 24-48 часов. Концентрация СЛ в исходном растворе составляла 2,0 г·л-1 (рН 11,8). Из полученного раствора готовили модельные системы с необходимой концентрацией лигнина. Для исследования агрегативной устойчивости водных дисперсий технических лигносульфонатов использовали «Лифрин-50», элементный состав которого (в % к а.с.в.):N-0.39±0.04; C- 37,5±2.06; H-2.25±0.03; S – 2.63±0.05; О – 53.18±2.05; ОСН3 – 9.0; ОН общ =3.57. и сточные воды сульфитного производства ОАО «Кондопога», взятые в различных точках традиционного технологического процесса очистки основного потока.

Агрегативная устойчивость лигногуми-новых веществ (ЛГВ) исследовалась на

щелочной вытяжке, полученной при переработке гидролизного лигнина (ГЛ) при производстве лекарственного препарата согласно регламенту (Способ получения медицинского лигнина/ Шарков В.И [и др.] А.с. № 556811//Б.И.1977.№17).

Агрегативная и седиментационная устойчивость водных дисперсий технических лигнинов исследовалась методом спектрофотометрии. Оптическая плотность определялась на спектрофотометре СФ-46 при длине волн 280 и 480 нм или фотоэлектроколориметрах КФК-3 и КФК-3-01 в диапазоне 440-480 нм. Абсолютная погрешность шкалы коэффициентов пропускания ± (0,25–1) %. Значение рН системы контролировали с помощью рН-метра - милливольтметра рН -673М с точностью ±0,05 ед. рН. Эффективность коагуляционного выделения СЛ определяли после
2-х часового отстаивания системы по остаточной концентрации лигнинов в растворе над осадком (Ср) и в фильтрате (Сф). Фильтрация осуществлялась через бумажный фильтр “синяя лента”. Остаточную концентрацию СЛ определяли фотометрически.

Электрофоретическую подвижность водной дисперсии лигнина определяли методом микроэлектрофореза. Регистрацию передвигающихся в электрическом поле частиц производили с помощью микроскопа PZO (Poland) (объектив 5х и 10х, окуляр 7 х ). Для вычисления электрофоретической подвижности и -потенциала использовалось среднее статистическое значение скорости 25-30 частиц. Статистическая обработка результатов проводилась по программе расчета средней величины и дисперсии электрофоретической подвижности. Средняя погрешность измерений составляла 5–6% и не превышала 10 %.

Адсорбцию потенциалопределяющих Н+ и ОН- ионов (Г) и заряд дисперсии лигнина

определяли методом обратного потенциометрического титрования.

Фильтрационные свойства полученных систем исследовали на лабораторной установке,

предназначенной для фильтрационного анализа дисперсных систем (разряжение P= 3.3

кПа). Реологические свойства определяли методом капиллярной вискозиметрии. Для вискозиметрических определений применялся вискозиметр Уббелоде (радиус капилляра 0.081см, длина капилляра 11.25см).

Исследование дисперсии технических лигнинов методом мембранной фильтрации в тупиковом режиме на трековых мембранах с размерами пор 200, 100, 70, 50 и 30 нм в широком диапазоне рН проводили на примере СЛ при концентрации 10 мг·л-1. В работе использовали фильтрационную ячейку производства Института аналитического приборостроения (объем 200 см3, площадь поперечного сечения 25.5 см2). Фильтрацию осуществляли последовательно через трековые мембраны с убывающим размером пор.

Глава 3 посвящена результатам исследования и их обсуждению. Данная глава состоит из трех частей, в каждой из которых обсуждаются коллиоидно-химические свойства низкоконцентрированных водных дисперсий технических лигнинов, различающихся по способу выделения из древесины.

В разделе 3.1. представлены исследования агрегативной и седиментационной устойчивости водной дисперсии сульфатного лигнина. Это раздел состоит из 8 подразделов, в которых рассматривается влияние различных факторов на устойчивость гетерофильной дисперсии СЛ. Влияние рН системы на устойчивость водной дисперсии СЛ представлено в разделе 3.3.1. При исследовании фотометрическим методом установлено, что растворы СЛ при различных концентрациях от 10 до 1000 мг·л-1 имеют интервал рН (с учетом его смещения в зависимости от концентрации СЛ), где система является седиментационно-устойчивой и видимых изменений в ее состоянии при

регулировании рН не наблюдается. В качестве примера на рис. 2 представлена зависимость оптической плотности водной дисперсии СЛ от рН через различные промежутки

времени после ее приготовления, которая показывает, что в данном случае система в области рН от 3 до 12 является седиментационно-устойчивой. В области рН <3 по мере приближения к изоэлектрической точке СЛ, которая находится в области рН 2, протекают процессы нейтрализа-ционной коагуляции, скорость которой возрастает по мере приближения к изоэлектрическому состоянию.

Сравнительное исследование агрегативной устойчивости СЛ в присутствии HCl и H2SO4 показало, что H2SO4 обладает более высокой

коагулирующей способностью по отношению к СЛ, чем HCl, хотя при рН 2.0 эффекты удаления СЛ из воды под действием обеих кислот являются практически одинаковыми. В общем случае, понижение рН водных дисперсий щелочных технических лигнинов, и в частности СЛ, приводит к потере их агрегативной устойчивости, причем система теряет стабильность по мере приближения к точке нулевого заряда этих лигнинов (для СЛ рН ~2.0), что свидетельствует о нейтрализационном механизме коагуляции.

Более наглядно изменение состояния системы в результате происходящих коагуляционных процессов и, как следствие этого, изменение ее дисперсного состава демонстрирует рис.3, на котором приведена зависимость распределения частиц СЛ по массе (%) в водном растворе, полученная при последовательной фильтрации низкоконцентрированной системы СЛ методом мембранной фильтрации на трековых мембранах. Можно выделить три области рН, с преобладанием частиц различного размера, образующихся при подкислении водно-щелочной системы вода-СЛ с помощью H2SO4. В области рН 6-9 преобладают частицы с размерами от 30 до 50 нм (кривая 2), их массовая доля составляет около 50%, причем эти частицы значительно гидрофилизированы и имеют показатель преломления близкий к показателю преломления среды. В области рН 4 – 2 – частицы, преимущественно представлены более крупными агрегатами, размер которых превышает 200 нм (кривая 6), причем массовая составляющая их растет по мере понижения рН. Область рН, где частицы имеют размеры менее 30 нм, представлена пунктирной линией. Полученные зависимости распределения

частиц по размерам в водных дисперсиях СЛ от рН при использовании метода мгновенного смешения компонентов могут быть объяснены следующим образом. Изменение рН системы приводит к изменению величины плотности отрицательного поверхностного заряда частиц СЛ. Степени диссоциации функциональных групп, таких как фенольные гидроксилы (рКфен10.5 – 11) и карбоксильные группы (рКсоон<4.75), обеспечивающих агрегативную устойчивость системы, с понижением рН уменьшаются. При рН 2.15 в условиях приближения к изоэлектрическому состоянию частиц

СЛ диссоциация фенольных гидроксилов полностью отсутствует, а плотность поверхностного заряда, обусловленная незначительной диссоциацией карбок-

сильных групп, уже является недостаточной для сохранения устойчивости водной дисперсии СЛ.

В разделе 3.1.2 рассмотрено влияние концентрации СЛ на устойчивость его водной дисперсии. Установлено, что увеличение концентрации СЛ в системе уменьшает диапазон рН, где система сохраняет свою седиментационную устойчивость, а значение рН, соответствующее началу фильтрационного выделения СЛ смещается в менее кислую область. На основании этих данных была построена зависимость рН начала фильтрационного выделения СЛ, отвечающего началу уменьшения концентрации СЛ в фильтрованной пробе, от концентрации СЛ в исследованных системах (рис.4). Качественно найденная зависимость рН начала фильтрационного выделения СЛ при выбранном фильтре «синяя лента» от концентрации дисперсии СЛ в системе при 25°С объяснена следующим образом. Изоэлектрическая точка и точка нулевого заряда СЛ находятся при рН2. При регулировании рН с помощью кислоты при мгновенном смешении компонентов происходит зарождение фазы СЛ, перераспределение дисперсного состава и изменение структуры макромолекул СЛ. Все эти процессы связанны с изменением поверхностного заряда СЛ, ДЭС и гидратных оболочек дисперсных частиц. Рост рН системы приводит к увеличению плотности отрицательного

заряда (-потенциала) дисперсии СЛ (рис.6), за счет изменения степени диссоциации поверхностных кислород-содержащих (карбоксильных и феноль-ных) функциональных групп СЛ, что в свою очередь вызывает рост электроста-тической составляющей энергии взаимодействия частиц СЛ и, следовательно, увеличение агрегативной устойчивости системы. С другой стороны, увеличение концентрации СЛ в системе должно приводить к увеличению вероятности частоты столкновений

частиц, которые приводят к коагуляции, и,

следовательно, скорости их коагуляции. В

результате этого, одна и та же скорость коагуляции, отвечающая образованию агрегатов одинакового размера, которые

начинают задерживаться фильтром, будет наблюдаться как в случае малых концентраций частиц при меньшей плотности их заряда (-потециала), так и в случае более высокой плотности заряда (-потенциала), но при большей концентрации частиц. Таким образом, увеличение концентрации СЛ должно приводить к смещению рН начала фильтрационного выделения коагулированных частиц СЛ в область более высоких значений рН. Количественная связь между соотношением концентраций частиц СЛ и величинами их -потенциалов в условиях начала фильтрационного выделения СЛ при регулировании рН без введения фонового электролита получена нами на основе представлений о медленной коагуляции дисперсных систем и имеет следующий вид: ln(n2/n1)=К( 22- 12).

На основании экспериментальных данных с использованием значений -потенциалов СЛ, построена зависимость ln(Сi/С1) от (i2- 12) рис.5. Она имеет линейный характер (неболь-шие отклонения ряда точек от линейной зависимости связанны с погрешностями определения -потенциала), что хорошо

коррелирует с выше приведенным уравнением, основанным на представлениях о медленной коагуляции. На основании этих

данных, (рис.5.) рассчитана константа К,.....величина которой составила ~3. 103 В-2. Согласно представленному уравнению, размер образующихся агрегатов, отвечающих началу их задержки при выбраном режиме фильтрации, соответствует 3 мкм (3·103 нм)

при условии ионной силы раствора10–2, приведенной толщине ДЭС 30, и принятой величине Нб=1. Данный размер агрегатов СЛ является вполне реальным и попадает в диапазон крупных частиц при соответствующих значениях рН, определенных при использовании метода фильтрации на трековых мембранах, что подтверждает правомочность сделанных допущений при выводе уравнения.

Влияние температуры на устойчивость дисперсии СЛ обсуждается в разделе 3.1.3. Повышение температуры дисперсионной среды (рис. 4) вызывает смещение величины рН фильтрационного выделения СЛ в область более высоких значений рН (область более высокой плотности отрицательного заряда и -потенциала частиц СЛ). Увеличение концентрации СЛ и температуры приводит к увеличению частоты столкновений частиц СЛ и, следовательно, скорости их коагуляции. В результате этого, одна и та же скорость коагуляции, отвечающая образованию агрегатов одинакового размера, которые начинают задерживаться фильтром, будет наблюдаться в случае малых концентраций частиц при меньшей плотности их заряда (-потенциала), а в случае более высокой плотности заряда (-потенциала) - при большей температуре и концентрации частиц.

В разделе 3.1.4. обсуждается влияние электролитов на электрофоретическое поведение и агрегативную устойчивость водных дисперсий СЛ. Зависимости =f(рН) для этих дисперсий при различных концентрациях электролитов NaCl, CaCl2, Al2(SO4)3 были построены на основе экспериментальных и расчетных данных (рис.6.). Полученные данные свидетельствуют, что во всем исследованном диапазоне рН в присутствии этих электролитов частицы СЛ заряжены отрицательно. Вид зависимостей =f(рН) во всех исследованных случаях определяется типом и концентрацией фонового электролита. Изоэлектрическая точка СЛ в отсутствие фонового электролита находится в области рН 2, что свидетельствует о кислотном характере активных групп СЛ. Введение NaCl и увеличение его концентрации приводит к понижению абсолютного значения -потенциала (рис.6 а), что обусловлено сжатием диффузионной части ДЭС. В случае CaCl2

в растворах, содержащих двухзарядные катионы Са2+, является значительный рост адсорбции этих ионов и вхождение их в слой Штерна по мере роста степени диссоциации кислотных функциональных групп. В результате этого в области рН< 4.5 коагуляция СЛ под действием CaCl2 происходит по концентрационному механизму, тогда как в области более высоких значений рН, за пределами переходного состояния СЛ (рН 4.5-6.0) от гидрофобного к гидрофильному, начинает действовать нейтрализационный механизм коагуляции СЛ. В присутствии сульфата алюминия (рис.5. в) зависимости -потенциала от рН имеют более сложный характер. На начальном участке зависимости =f(рН) рост рН от 2 до 3 приводит к росту отрицательной величины -потенциала СЛ. Однако, дальнейшее увеличение рН (рН > 3) приводит к резкому уменьшению (по модулю) величины -потенциала, что может быть связано с увеличением адсорбционной способности гидролизованных форм алюминия по сравнению с негидролизованной – Al3+. Область изоэлектрического состояния образовавшихся комплексов алюминия с СЛ находится в интервале рН 4–5. Следует также отметить отсутствие перезарядки образовавшихся лигногидроксоалюминиевых комплексов, которые при дальнейшем повышении рН (рН>5) вновь приобретают отрицательный заряд.

Эффект коагуляционного выделения СЛ в присутствии Al2(SO4)3 определяли после двухчасового отстаивания по остаточной концентрации лигнина в растворе и фильтрате. Для удобства обсуждения результатов исследования агрегативной устойчивости СЛ и зависимости – потенциала СЛ от рН представлены совместно с зависимостями остаточных концентраций СЛ от рН. Таким образом, на рис.7 представлены зависимости – потенциала СЛ (1) и остаточных концентраций СЛ в растворе – Ср (2) и фильтрате- Сф (3) при различных концентрациях Al2(SO4)3. Согласно рис. 7. а (кривые 2 и 3) при наименьшей из применяемых концентраций Al2(SO4)3 10-5 моль·л-1 в интервале рН >5 исследуемая система имеет равные и постоянные значения концентраций СЛ (Ср = СФ), соответствующие исходной концентрации СЛ в исследуемой системе. По этим данным система является агрегативно устойчивой в данном диапазоне рН. Однако, приведенные выше результаты исследований показывают, что и в этой области рН идет агрегация частиц СЛ, но данными оптическим методами исследования ее зафиксировать не удается. При дальнейшем подкислении системы (рН < 5), величина Сф начинает резко уменьшаться. Это является результатом происходящих коагуляционных процессов в системе, приводящих к образованию крупных частиц СЛ, механически задерживаемых фильтром, а также в результате гетероадагуляционного взаимодействия с фильтром. В области рН < 3.6 происходит самопроизвольная седиментация образующихся агрегатов, которая приводит к уменьшению Ср над осадком. При увеличении концентрации (рис.7. (б) кривые 2 и 3) алюминия ход зависимости сохраняется, но «начало» коагуляции,



Pages:     | 1 || 3 | 4 |   ...   | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.