авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 ||

Технология комплексных кальцийсодержащих удобрений на основе азотнокислотного разложения апатита

-- [ Страница 2 ] --

Как следует из представленных данных растворимость нитрата аммония растет при снижении концентрации азотной кислоты в системе и повышении температуры, что удовлетворительно коррелируется с температурной зависимостью содержания аммонийного азота в аммонизированных нитратно–фосфатных растворах.

На основании анализа полученных результатов химических и физико-химических исследований процесса аммонизации азотно- фосфорнокислотного раствора с предварительным вымораживанием части тетрагидата нитрата кальция также можно предложить схему последовательности формирования твердых фаз в зависимости от значения рН раствора (рис.6).

а) б)

в) г)

Рис.6 Схема последовательности кристаллизации твердых фаз при аммонизации вымороженного азотно–фосфорнокислотного раствора в зависимости от значения рН: а) при 20С; б) при 30С; в) при 40С; г) при 50С.

В начальный период, при повышении рН среды до величины 2 в жидкой фазе в начале наблюдается опалесценция, вызванная началом кристаллизации, которая формируется далее в тонкодисперсную взвесь. В данной области кристаллизуются нерастворимые фосфаты железа и алюминия, а также фосфаты РЗЭ цериевой группы, что подтвердили результаты рентгенофлуоресцентного анализа.

При рН=2,0 2,2 происходит интенсивное выделение моноаммонийфосфата (МАФ) и нитрата аммония вследствие нейтрализации азотной кислоты и первого водородного иона фосфорной. По достижении рН = 3,0 3,5 монокальцийфосфат перекристаллизовывается в дикальцийфосфат, а моноаммонийфосфат – в диаммонийфосфат (ДАФ). Эти процессы протекают до рН = 5 6. Ожидаемого при рН = 5 6 образования трикальцийфосфата не обнаружено, на основании чего можно сделать вывод о возможности проведения карбонизации вымороженной АКВ в области более высоких значений рН (5 6).

В пятой главе описан процесс карбонизации аммонизированных невымороженной и вымороженной азотнокислотных вытяжек в установленных ранее температурно-концентрационных интервалах.

Карбонизация азотно фосфорнокислотных растворов без выделения тетрагидрата нитрата кальция.

Карбонизацию аммонизированного азотно-фосфорнокислотного раствора, полученного после непосредственного разложения апатита азотной кислотой и не прошедшего стадии вымораживания нитрата кальция, содержащего перед аммонизацией (% масс.): СаО – 9,1%; Р2О5 – 14,2%; HNO3 – 9,9%, проводили при температуре 30С насыщенными при 20С растворами карбоната аммония. Для этого аммонизированный до рН = 4,0; 4,5; 5,0; 5,5; 6,0 азотно-фосфорнокислотный раствор карбонизировали раствором (NН4)2СO3 до рН = 6,5.

ИК спектральный анализ карбонатного нитрофоса, полученного в ходе аммонизации до значений рН = 4; 5; 6 невымороженной АКВ с последующей карбонизацией (NH4)2CO3 до рН = 6,5 показал, что основными фазами в конечном продукте являются нитрат аммония и смесь моно- и дикальцийфосфатов. Кальциевая составляющая представлена, в основном, цитраторастворимым дикальцийфосфатом, который на заключительном этапе при рН > 6 в начинает перекристаллизовывается в трикальцийфосфат.

Проведенные рентгенофазовые исследования (рис.7) также позволили идентифицировать ряд азот- и фосфорсодержащих соединений, представляющих состав полученных удобрений. Рентгенографически были идентифицированы следующие фазы: четкий интенсивный рефлекс при 2=40 свидетельствует о присутствии в продукте карбонизации дикальцийфосфата. Пики с углами 2= 22,5; 29,0; 33,0 характеризуют наличие нитрата аммония, а рефлексы при 2= 26,5; 31,0 и 36,5 – карбоната кальция. Не обнаружено ренгенографически трикальцийфосфата, хотя химическим и ИК- спектрометри -

ческим методами установлено начало образования в конечном продукте нерастворимого фосфора, по-видимому, в незначительном количестве.

Дифференциально термический анализ карбонатного нитрофоса, полученного на основе невымороженной АКВ подтверждает присутствие в нем ранее идентифицированных фаз. Характер TG - кривой (рис. 8) в начальный период (25160С), свидетельствует о потере в исследуемом образце воды.

Этап разложения нитрата аммония начинается после достижения нагрева образца до температуры 162С и заканчивается при 300С. Начиная с температуры 308С наблюдается падение массы образца, вызванное дегидратацией ортофосфатов кальция с переходом в пирофосфаты, протекающее с отщеплением воды. Процесс этот идет достаточно медленно, через образование ряда

промежуточных соединений. Конечным продуктом разложения является пирофосфат кальция.

Таким образом, по данным физико-химического исследования можно сделать заключение о присутствии в конечном продукте следующих солей: монокальцийфосфата, дикальцийфосфата, нитрата аммония, карбоната кальция и небольших количеств трикальцийфосфата.

Конечный состав продукта, рассчитанный на основе дифференциально– термического, рентгенофазового и химического анализа представлен в табл. 1.

Таблица 1

Солевой состав удобрения, полученного из невымороженной АКВ

Формула соединения Количество в образце, %масс.
СаHPO4 · 2Н2О 30,4
Са(H2PO4)2· Н2О 2,6

Продолжение таблицы 1

NH4NO3 56,0
СаСО3 7,3
Са3 (PO4)2 1,9
н.о. 1,8

Карбонизация вымороженных азотно фосфатных растворов.

Введение карбоната аммония в вымороженные аммонизированные растворы проводили при рН = 4 – 5, когда в твердой фазе еще не наблюдалось образования трикальцийфосфата. Для вымороженного раствора температуру карбонизации принимали 40С, т.к. этому значению отвечало максимальное содержание водорастворимой Р2О5 в твердой фазе.

В соответствие с проведенными материальными расчетами, базирующимися на основании данных дифференциально-термического и химического анализов можно сделать заключение о солевом составе полученного удобрения (табл.2):

Таблица 2

Солевой состав удобрения, полученного из вымороженной АКВ

Формула соединения Количество в образце, %масс.
(NH4)2HPO4 25,1
NH4H2PO4 21,5
NH4NO3 42,3
СаСО3 7,2
СаHPO4 1,6
н.о. 2,3

В шестой главе представлены принципиальные технологические схемы производства удобрений с регулируемой растворимостью по укороченной технологии, характеризующейся более низкими инвестиционными и энергетическими затратами. Примером может служить технологическая схема получения карбонатного нитрофоса без вымораживания нитрата кальция (рис.9), основными стадиями которой являются: разложение апатитового концентрата

57%-ной азотной кислотой; нейтрализация маточного раствора газообразным аммиаком с последующей его карбонизацией углекислотой; сушка и грануляция полученного целевого продукта.

По предложенной в работе технологической схеме получения жидкого сложного удобрения ЖКУ – NPCa на ООО «ТЗК Экохиммаш» г. Буй Костромской области согласно ТУ 2186-010-02068189 – 21/001 была произведена опытно-промышленная наработка партии нового агрохимиката жидкофазного комплексного удобрения ЖКУ (NPCa), который используется в качестве удобрения – подкислителя в системе малообъемной технологии выращивания тепличных культур в количестве 3 тонн.

Состав ЖКУ(NPCa) : P2O5 -12,7%масс.; СаО – 16,4%масс.; Nобщ.-8,5%масс.

Испытания, проведенные в течении двух сезонов в зимних блочных теплицах бригады №1 совхоза «Тепличный» г. Иваново в системе капельного полива при малообъемном выращивании томатов F1 «Фронтеро», показали более высокую экономическую эффективность ЖКУ(NPCa) по сравнению с традиционно применяемым подкислителем среды - 72% ортофосфорной кислотой и 57% азотной кислотой, которая составила 1,5руб/1,0руб затрат.

Рис. 9 Блок - схема получения ЖКУ NPCa ( - выделенная область) и комплексных кальцийсодержащих удобрений ( - выделенная область) в системе производства нитрофосфатов.

ВЫВОДЫ:

На основании проделанной работы можно сформулировать следующие выводы:

Изучен процесс разложения апатита стехиометрической и ниже стехиометрической нормами азотной кислоты с концентрацией 56% в температурном интервале от 20 до 50С. Вычислены константы скорости процесса и величина энергии активации, составляющая 5,5 ккал · моль для нормы азотной кислоты 90%. Сделан вывод о диффузионном механизме протекания процесса.

Наработана промышленная партия и проведены агрохимические испытания полученного жидкофазного азотно-фосфатно-кальциевого комплекса в качестве удобрения – подкислителя для тепличных хозяйств, а также физиологически активного стимулятора роста растений. Экономическая эффективность продукта составила 1,5руб./1руб. затрат.

Изучена растворимость нитрата аммония в системе NH4NO3 – HNO3 – H2O, являющегося частным случаем системы CaO – P2O5 – N2O5 – H2O при температуре 20 - 50С. Установлено, что при повышении концентрации HNO3 от 10 до 58% растворимость NH4NO3 в среднем снижается на 15 - 20%, что объясняется уменьшением количества воды в системе и высаливающим действием одноименного иона.

Изучен процесс аммонизации азотно-фосфорнокислотных растворов в температурном интервале 20 50С и значениях рН от 0 до 6. На основании проведенных исследований выбраны условия проведения последующего процесса карбонизации: рН = 5 при температуре 50С для невымороженного и рН = 5 при температуре 30С для вымороженного азотно-фосфорнокислых растворов.

Карбонизацией и последующей сушкой аммонизированных азотно-фосфорнокислотных комплексов получены опытные образцы удобрений типа карбонатного нитрофоса и нитроаммофоса с содержанием усвояемого растениями фосфора от 27 до 34% и азота от 20,5 до 22,5%, что соответствует маркам удобрений с соотношением питательных элементов от 1 : 1 до 1 : 1,5.

С применением методов химического, ИК-спектрального, рентгенофазового, дифференциально-термического и рентгенофлуоресцентного анализов установлен солевой состав полученных комплексных кальцийсодержащих удобрений.

Предложена технологическая схема получения комплексных кальцийсодержащих удобрений на базе существующих установок по получению азофоски и нитрофоски.

Основное содержание диссертации опубликовано в работах:

  1. Гунин В.В. О растворимости нитрата аммония в водных растворах азотной кислоты / В.В. Гунин, О.П. Акаев, В.Г. Артеменко, Т.К. Акаева // Изв. ВУЗов. Химия и хим. техн., №1, 2008. - С.121 – 122.
  2. Артеменко В.Г. Модифицирование азотнокислотной вытяжки полифосфатом аммония / В.Г. Артеменко, О.П. Акаев, Т.И. Озерова, В.В. Гунин // Техника и технология защиты окружающей среды: матер. Междунар. науч.-техн. конф.; Минск: БГТУ, 2006. - С. 77-78.
  3. Гунин В.В. Исследование кинетики механизма процесса разложения апатита азотной кислотой различной концентрации / В.В. Гунин, О.П. Акаев, Г.Н. Ненайденко, В.Г. Артеменко, Т.И. Озерова // Вопросы стабилизации плодородия и урожайности в Верхневолжье; - М.: ВНИИА, 2006. – С. 123-127.
  4. Кебец А.П.. Перспектива и проблемы развития аппаратуры экоаналитического контроля / А.П. Кебец, В.В. Гунин, А.П. Каюков // Актуальные проблемы науки в агропромышленном комплексе: материалы 57-й Междунар. науч.-практ. конф. в 4-х т. Т-IV;- Кострома: КГСХА, 2006. – С. 80.
  5. Гунин В.В. Кинетика растворения апатита нестехиометрическими нормами азотной кислоты / В.В. Гунин, О.П. Акаев, В.Г. Артеменко [и др.] // Вопросы повышения урожайности сельскохозяйственных культур: материалы Междунар науч.-метод. конф.; - Иваново: ИГСХА, 2007. С. 99-107.
  6. Артеменко В.В. Влияние жидкофазного комплексного удобрения (ЖКУ) на рост, развитие и урожайность оздоровленного картофеля / В.Г. Артеменко, А.В. Ямчук, О.П. Акаев, Т.И. Озерова, В.В. Гунин // Вопросы повышения урожайности сельскохозяйственных культур: материалы Междунар науч.-метод. конф.; - Иваново: ИГСХА, 2007.- С. 244 - 250.
  7. Гунин В.В. Азотнокислотное разложение апатита нестехиометрическими нормами азотной кислоты / В.В. Гунин, В.Г. Артеменко О.П. Акаев, Г.А. Пригорелов // Актуальные проблемы науки в агропромышленном комплексе: материалы 58-й Междунар. науч.-практ. конф. в 3 т. Т -2;- Кострома: КГСХА, 2007. – С. 23 – 24.
  8. Ямчук А.В. Влияние азотнокислотной вытяжки на урожайность картофеля / А.В. Ямчук, В.Г. Артеменко О.П. Акаев, Т.И. Озерова, В.В. Гунин // Актуальные проблемы науки в агропромышленном комплексе: материалы 58-й Междунар. науч.-практ. конф. в 3 т. Т -2;- Кострома: КГСХА, 2007. – С. 69 - 70.
  9. Гунин В.В. Исследование и разработка карбонатного нитрофоса / В.В. Гунин, О.П. Акаев, В.Г. Артеменко, Т.К. Акаева // Проблемы региональной экологии в условиях устойчивого развития: материалы Всеросс. науч.-практ. конф.; - Киров: ВГГИ, 2007. - С. 366 – 367.
  10. Ямчук А.В. Влияние жидкофазного азотно-фосфатно-кальциевого удобрения (NPCa) на развитие растений томата, перца и цветов в защищенном и открытом грунте / А.В. Ямчук, В.Г. Артеменко, В.В. Гунин, О.П. Акаев, Т.И. Озерова, // Актуальные проблемы науки в агропромышленном комплексе: материалы 59-й Междунар. науч.-практ. конф. в 5 т. Т -5;- Кострома: КГСХА, 2008. – С. 88 - 89.

Выражаю слова благодарности и признательности коллективу кафедры технологии неорганических веществ Ивановского государственного химико-технологического университета (зав. кафедрой проф. д.т.н. Ильин А.П.) за конструктивные замечания и продуктивные рекомендации в ходе обсуждения материалов исследования.

Автор.



Pages:     | 1 ||
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.