авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 |

Исследование процессов смешивания сыпучих материалов в лопастных смесителях непрерывного действия

-- [ Страница 2 ] --

Распределение содержания трассера по ячейкам в некоторый момент времени может быть представлено вектором-столбцом

S=[S1 S2 … Sm Sm+1 … S2m … S(n-1)m+1 … Smn]t, (3)

в соответствие со сквозной последовательной нумерацией ячеек, показанной на рис.1 (индекс t означает транспонирование). В величину S может быть заложен различный смысл. В терминах теории вероятности это вероятность для некоторой меченой частицы трассера в данный момент оказаться в данной ячейке. При большом числе частиц трассера это их относительная концентрация (по отношению к массе введенного трассера) в этот момент в ячейке. Наконец, это может быть абсолютная масса трассера в ячейке. Единственным требованием к содержанию величины S является то, что приписываемое ей свойство должно быть аддитивным и удовлетворять уравнению баланса. Показанное на рис.1 пространство состояний является неполным, так как не включает коллектор частиц за рабочей зоной, куда выходят частицы. При одноразовом импульсном вводе трассера асимптотически все частицы с вероятностью, равной единице, окажутся в этом коллекторе, а вероятность найти их в выделенных ячейках цепи будет равна нулю.

Будем рассматривать состояние процесса в дискретные моменты времени tk=(k-1)t, где t – продолжительность, а k – номер временного перехода. Величина k может рассматриваться как дискретный (целочисленный) аналог текущего времени. Таким образом, все переменные модели становятся целочисленными: номер ячейки выражается числами j=1,2,…,m и i=1,2,…,n, а время - числом k=1,2,…. Продолжительность перехода t выбирается настолько малой (но, естественно, конечной), чтобы в его течение частицы из данной ячейки могли перейти только в соседние с ней ячейки, но не далее.

Эволюция состояния смеси описывается рекуррентным матричным равенством

Sk+1=P*Sk, (4)

где Р – матрица переходных вероятностей (переходная матрица), являющаяся основным оператором модели. Она имеет размер (mn)x(mn) и строится по известному правилу: каждый ее столбец принадлежит определенной ячейке и в нем в строках с номерами ячеек, куда в соответствие с принятой схемой разрешены переходы, размещаются вероятности этих переходов.

Схема возможных переходов из ячейки показана на рис.1 справа. Обозначенные на ней вероятности переходов имеют следующий характер. В предположении о том, что диффузионный перенос подчинен закону Фика, вероятности диффузионных переходов рассчитываются следующим образом

, , (5)

где D – коэффициент макродиффузии в соответствующем направлении.

Вероятности конвективного переноса в соответствие с их физическим смыслом рассчитываются как

, , (6)

где V – физические скорости движения ключевого компонента по направлениям (по горизонтали – скорость транспорта, по вертикали – скорость сегрегационного движения).

Рекуррентное равенство (3) позволяет рассчитывать эволюцию содержания трассера и его выход из смесителя, который рассчитывается совместно для всех ячеек последнего столбца

(7)

и описывает распределение времени пребывания частиц в смесителе, по которому определяются среднее время пребывания частиц и дисперсия РВП

(8), (9)

Некоторые из результатов численных экспериментов с моделью показаны на рис.3-6. Рис.3 иллюстрирует влияние поперечной неоднородности потока при различных загрузках смесителя, характеризуемой числом слоев m, для несегрегирующего трассера. При загрузке m=4 и менее потока материала однороден и загрузка не влияет на эти кривые. По мере того, как загрузка поднимается над уровнем, ометаемом лопастями, и занимает слои, которые движутся медленнее, кривые распределение деформируются в сторону больших времен пребывания, сначала проявляя тенденцию к бимодальности, а потом становясь выражено бимодальными. Продольная и поперечная диффузия (рис.4) сглаживает тенденцию к бимодальности, но среднее время пребывания остается гораздо более высоким по сравнению с временем при однородном потоке.

На рис.5 показано влияние сегрегации трассера на вид кривых РВП. Заметим, что в однородном потоке с объединенным выходом материала сегрегация трассера не играет никакой роли, потому что неважно по каким одинаковым слоям трассер достигает выхода. Ситуация принципиально меняется, если поток неоднороден. При сегрегации трассера вниз его большая часть попадает в пристенные слои, движущиеся с большей скоростью, и его среднее время пребывания становится меньше, чем у смеси в целом. Кривая распределение становится более «острой» по сравнению с кривой для отсутствия сегрегации. При сегрегации трассера вверх имеет место обратная ситуация: большая его часть движется в более медленных слоях, и время его пребывания возрастает.

На рис.6 показано влияние параметра скорости сегрегации на время пребывания трассера. При отсутствии сегрегации (vy=0) время пребывания по потоку и по кривой распределения совпадают. При наличии сегрегации они отличаются, причем отличие увеличивается с ростом параметра скорости сегрегации и может достигать существенных значений.































В третьей главе приведены результаты экспериментального исследования, идентификации и верификации модели. Эксперименты выполнялись на промышленном смесителе GCM500. В качестве модельных сыпучих материалов были использованы: материал А - кускус (couscous) (x50A=1,4мм, A=1,44г/см3); материал В - манная крупа. (x50В=0,34 мм, В=1,47г/см3). Исследования выполнены для двух типов лопастных аппаратов: с наклонными лопастями, перемещающими материал вдоль смесителя и вызывающими поперечную неоднородность потока, и с прямыми лопастями, участвующими только в поперечном перемешивании потока.

Обобщенные результаты показаны на рис.7. Для всех разгрузочных характеристик для наклонных лопастей (рис.7а) имеется характерный излом при загрузке, соответствующей объему, ометаемому лопастями (около 0,9 кг). Характеристики расслаиваются по скоростям вращения лопастей, но путем введения переменной Q*n-0,15 их удалось свести к одной ломаной линии для каждого материала. Это позволяет восстанавливать разгрузочную характеристику по всего двум опытным точкам для одной скорости вращения. При прямых лопастях излом отсутствует (рис.7б), и для каждого материала обобщенная разгрузочная характеристика сводится к прямой, проходящей через начало координат, для восстановления которой требуется всего одна опытная точка. По полученным характеристикам были восстановлены профили продольных скоростей слоев (двухступенчатый для наклонных лопастей и однородный для прямых), которые использовались для расчетов по разработанной модели.















Для экспериментального построения РВП порцию трассера (обычно 100 г) засыпали в загрузочный патрубок при работе смесителя в установившемся режиме, после чего одновременно начинали отбор материла на выходе в движущиеся на конвейере кюветы с шагом по времени 10 с. Отбор прекращали при полном отсутствии частиц трассера в выходящем потоке. Содержимое кювет анализировали и определяли долю трассера, вышедшего на каждом шаге по времени. Частицы трассера были предварительно окрашены, и анализ их содержания производился по цифровым фотографиям кювет по специальной программе распознавания образов. Исследования выполнялись для различных комбинаций трассера и состава смеси: А в А, В в В (диагностирование потока, сегрегации заведомо нет), А в В (ожидаемая сегрегация вверх), В в А (ожидаемая сегрегация вниз), А в А+В (ожидаемая сегрегация вверх), В в А+В (ожидаемая сегрегация вниз). Пример экспериментальных кривых РВП для трассера А показан на рис.8, где также нанесены расчетные кривые с подобранными для каждой производительности переходными вероятностями.

 -16

 -17

 Рис.8а-18

 Рис.8а-19

 Рис.8а-20




















Рис.8а соответствует наклонным лопастям, то есть неоднородному потоку, при котором наблюдается явное расслоение РВП для разных производительностей. На РВП при прямых лопастях (рис.8б) этого расслоения нет, и РВП зависит только от скорости вращения лопастей. Из сравнения расчетных и опытных данных следует, что, подобрав переходные вероятности по экспериментальной РВП для одной производительности, перейти к другим производительностям можно чисто расчетным путем. Для всех исследованных режимов смешивания и составов смеси найденные переходные вероятности сведены в представленную в диссертации таблицу. Расчетные кривые распределения времени пребывания компонентов и их первые моменты (среднее время пребывания и дисперсия) после параметрической идентификации модели находятся в удовлетворительном соответствии с опытными данными и позволяют расчетным путем прогнозировать их изменение при переходе от одной производительности к другой (при одинаковой скорости вращения лопастей) без привлечения дополнительной эмпирической информации.

В четвертой главе рассмотрены вопросы технологического и технического приложения результатов работы.

Было исследовано, как смесители с полученными РВП способны подавлять пульсации расхода одного из подаваемых компонентов, то есть обеспечивать стабильность состава смеси на выходе по времени. Принято характеризовать эту способность смесителя передаточным числом по дисперсиям пульсаций расхода компонента на входе в смеситель и на выходе из него – VRR:

, (10)

где 2in – дисперсия пульсации во времени расхода ключевого компонента на входе в смеситель, 2out – то же на выходе из него. Считается, что промышленный смеситель должен обеспечивать VRR не менее 60. В численных экспериментах рассматривались случайные и синусоидальные пульсации. Было установлено, что определяющим фактором, влияющим на VRR, является отношение времени пребывания Тf Тm к периоду пульсаций Тin. Требуемое технологией значение VRR достигается при Тm/Тin>1,5, что позволяет по Тf =M/Q и заданной производительности найти требуемую массу материала в смесителе и его объем. При дисперсии относительной РВП больше 0,75 ее влияние на VRR незначительно.

При смешивании склонных к сегрегации материалов достижение однородной смеси не достижимо в принципе. Поэтому важное значение имеет разработка мероприятий по подавлению негативного влияния сегрегации. Несмотря на то, что сегрегация может быть вызвана многими причинами, определяющими причинами являются разница в размерах и плотности частиц компонентов, в результате чего сила веса действует на них по-разному и приводит к расслоению. Поэтому одним из возможных путей подавления негативного влияния сегрегации является устранение силы веса. Это может быть достигнуто наложением противоположной весу массовой силы, например, периодической силы инерции, среднее за период ускорение которой равно ускорению силы тяжести. Реализация такого подхода может быть достигнута в разработанной новой конструкции вибрационного смесителя, в котором рабочий объем размещен на обратном маятнике (ось качания внизу), где центробежная сила инерции направлена вверх, то есть противоположно силе тяжести. Равенство ее среднего значения силе тяжести обеспечивается подбором частоты колебаний, обеспечиваемой соответствующей жесткостью упругих элементов.

Другим направлением борьбы с вредным влиянием сегрегации является распределенная подача сегрегирующего компонента в рабочий объем смесителя. Если в схеме на рис.1 его подавать не в левую верхнюю ячейку, а разделить на несколько потоков и подавать в верхние ячейки (в ячейки первой строки), то разные части этого потока будут сегрегировать вниз в течение разного времени, путем чего может быть достигнуто более равномерное распределение его концентрации по ячейкам последнего столбца, то есть на выходе из смесителя. Расчетный пример организации такого процесса показан на рис.9, откуда следует, что теоретически среднеквадратичное отклонение распределения концентрации сегрегирующего компонента может быть уменьшено в 1,5 раза.

Эта схема была реализована при модернизации лопастного смесителя непрерывного действия для приготовления смесей полимерных композиций в цехе №2 ООО «Полимерпластбетон», Ярославль, в результате чего однородность полиэтилена в готовой смеси повышена на 24%.

Разработанные модели, методы расчета и их программно-алгоритмическое обеспечение нашли практическое применение при выполнении исследовательских работ и промышленных проектов в горном институте г.Алби, Франция, Ченстоховском политехническом институте, Польша, университете г. Веспрем, Венгрия, и исследовательском центре Tel-Tek, Норвегия, о чем в приложении приведены подтверждающие документы.


Основные результаты диссертации

  1. Экспериментально исследованы разгрузочные характеристики промышленного лопастного смесителя непрерывного действия, связывающие массу смеси в смесителе с производительностью, и показана их связь со скоростью вращения лопастей и их конфигурацией, определяющей поперечную неоднородность потока.
  2. Выполнено экспериментальное исследование кривых распределения пребывания частиц ключевого компонента в смесителе при различных режимах его работы и конфигурациях перемешивающих лопастей.
  3. Разработана двумерная ячеечная математическая модель процесса перемешивания ключевого компонента в лопастном смесителе непрерывного действия с неоднородным потоком материала.
  4. Теоретически и экспериментально установлено, что поперечная неоднородность потока приводит к тенденции кривых распределения времени пребывания к бимодальности, а для склонного к сегрегации ключевого компонента – к отличию среднего времени пребывания частиц, рассчитанного по производительности и загрузке, от среднего времени пребывания, рассчитанного по кривой отклика.
  5. Предложено аппаратурное оформление смесителя, защищенное положительным решением о выдаче патента на полезную модель, в которой подавляется негативное проявление сегрегации компонентов.
  6. На Ярославском ООО «Полимерпластбетон» выполнена модернизация лопастного смесителя, позволившая повысить на 24% однородность получаемой смеси.
  7. Разработанные модели, методы расчета и их программно-алгоритмическое обеспечение нашли практическое применение при выполнении исследовательских работ и промышленных проектов в горном институте г.Алби, Франция, Ченстоховском политехническом институте, Польша, университете г. Веспрем, Венгрия, и исследовательском центре Tel-Tek, Норвегия.

Основное содержание диссертации опубликовано в следующих

печатных работах



Pages:     | 1 || 3 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.