Разработка композиционных материалов на основе соединений силиката натрия и каолина
Дополнительное введение к каолину мела и железного сурика (каолин 50 мас.%, мел 35 мас.%, Fe2O3 15 мас. %) приводит к тому, что прочность коагуляционной структуры, константа консистенции и индекс течения уменьшаются приблизительно в 2 раза. По истечении 24 ч эти характеристики возрастают не менее чем на 70–80 %. Это связано с тем, что присутствующие в композиции мел и Fe2O3 медленнее образуют коагуляционные связи в дисперсионной среде по сравнению с каолином. Пологий участок реологических кривых составляет 180…200 Па. Прочностные характеристики отверждённых композиций при этом несколько снижаются, но, с другой стороны, уменьшается их вымеливание и в 3 раза – смываемость силикатной плёнки.
Характерно, что уменьшение содержания каолина в твёрдой части композиции с 50 до 30 мас. %, при содержании мела 50 мас. % и талька 20 мас. %, заменившего Fe2O3, позволяет повысить её щёлоче- и водоустойчивость, а также твёрдость плёнки с 0,29 до 0,33 у.ед. Характер изменения реологических параметров в течение 24 ч указывает на стабилизацию коагуляционных связей между дисперсными частицами. С другой стороны, пигментная часть, где тальк не введён и содержание каолина уменьшено до 15 мас. %, а в системе превалирует мел (55 мас. %) и железный сурик Fe2O3 (30 мас. %), обеспечивает рост прочности коагуляционной структуры в процессе хранения более чем в 1,5 раза; константа констистенции увеличивается в 2,4 раза, а индекс течения уменьшается с 0,14 до 0,06; пологий участок на кривой течения достигает 500…600 Па. Эти факты свидетельствуют о существенном упрочнении структуры образца при хранении, что, вероятно, следует отнести на счёт действия Fe2O3. Такая композиция обладает повышенной водоустойчивостью и даёт твёрдые плёнки (0,34 у.ед.) с малой смываемостью (7,2 %) при действии нагрузки 20 Н.
Установлено, что замена в пигментной части композиции каолина на диоксид титана (TiO2) в сочетании с мелом (50 мас. %) и тальком (20 мас. %) даёт систему с малопрочной коагуляционной структурой. Однако при хранении в течение 24 ч мощность на её разрушение резко возрастает (до 0,97 МВт/м3), а также в 2 раза снижается индекс течения. Как и в случае применения железного сурика, композиции для образования стабильной структуры требуется определённое время. Эксплуатационные свойства при этом сопоставимы с композициями, содержащими до 30 мас. % каолина в пигментной части, однако стоимость титансодержащих составов выше, чем аналогичных, содержащих каолин. Полученные данные согласуются с данными исследований, согласно которым смеси компонентов «каолин – мел – тальк» в растворах латексов, как, видимо, и в растворах силиката натрия, дают менее прочную коагуляционную структуру, чем каждый из компонентов в отдельности. И, напротив, для сочетания «каолин – тальк» (соединения алюминия и магния) в пигментной части силикатной композиции аналогично водно-дисперсионным смесям наблюдается синергетический эффект в отношении коагуляционной структуры. Таким образом, установлено, что введение в композицию на основе ЖСК бутадиенстирольного латекса, а в состав пигментной части дополнительно к мелу, 15-30 мас.% наполнителя – каолина позволяет получать жизнеспособные композиции, которые можно использовать для защиты минеральных подложек. В качестве сонаполнителя композиций светлых тонов, целесообразно использовать тальк (до 20 %), а железный сурик является подходящим компонентом цветовых пигментных смесей, включающих каолин (~30 мас. %).
Оксиды алюминия, железа и цинка в значительном количестве содержатся также в отходах химической и стекольной промышленности. Так, типовая композиция на основе немодифицированного натриевого ЖС (обр. 1), где пигментная часть включает мел (75 мас. %), тальк (15 мас. %) и железный сурик (10 мас. %), нежизнеспособна, даёт неустойчивые в воде покрытия с малой эластичностью (табл. 1) и обладает малопрочной коагуляционной структурой: N = 0,02 МВт/м3; кроющая способность составляет 250 г/м2.
Модифицирование ЖС карбамидом, и введение взамен мела до 5 % отходов стекольного производства приводит к тому, что жизнеспособность композиции возрастает (120 сут., обр. 2). Однако прочность коагуляционной структуры уменьшается вдвое, индекс течения системы снижется с 0,17 до 0,11; пологий участок реологической кривой при переходе к образцу 2 сокращается с 200…220 Па до 120 Па. Введение в композицию в качестве физического модификатора латекса СКС-65-ГП в количестве 20 мас. % (обр. 3-5) позволяет более чем на порядок увеличить прочность коагуляционной структуры. Наиболее стабильные реологические свойства проявляются у смеси, включающей ~20 мас. % железного сурика (обр. 5); при этом массовое соотношение отходы стекольного производства: сурик соблюдается на уровне 1:3. Как видно из табл. 1, композиция жизнеспособна 120 сут., обладает высокой кроющей способностью (расход 75 г/м2), проч-
Т а б л и ц а 1
Свойства силикатных композиций после отверждения на минеральной подложке
№ образца | Время отверждения, ч | Прочность плёнки при изгибе, мм | Твёрдость плёнки по маятниковому прибору, у. ед. | Кроющая способность композиции на cухую плёнку, г/м2 | Водоустойчивость покрытия, через 24 ч | Смываемость плёнки при истирании под действием нагрузки, % | Жизнеспособность композиции, сут. |
1 | 8 | 50 | 0,32 | 250 | неустойчиво | 100 | 0,5 |
2 | 8 | 16 | 0,38 | 200 | слабо вымеливает | 12,4 | 120 |
3 | 7 | 10 | 0,39 | 80 | без изменений | 5,6 | 120 |
4 | 7 | 10 | 0,49 | 70 | без изменений | 3,6 | 120 |
5 | 7 | 10 | 0,41 | 75 | без изменений | 5,3 | 120 |
6 | 7 | 10 | 0,34 | 180 | без изменений | 7,3 | 120 |
7 | 7 | 10 | 0,32 | 250 | без изменений | 8,5 | 0,5 |
8 | 6 | 15 | 0,30 | 200 | без изменений | 9,8 | 120 |
9 | 6 | 16 | 0,32 | без изменений | 10,5 | 0,5 | |
10 | 6 | 10 | 0,41 | 80 | без изменений | 7,8 | 120 |
11 | 6 | 10 | 0,47 | 105 | без изменений | 8,7 | 120 |
12 | 6 | 10 | 0,39 | 115 | без изменений | 9,3 | 120 |
ность плёнки при изгибе – 10 мм, твердость – 0,41 у.ед., смываемость при истирании под действием нагрузки 20 Н – 5,3%. Этот факт свидетельствует в пользу широких возможностей введения соединений SiO2 и Al2O3 в композиции на основе модифицированного силиката натрия.
Полная замена пигментной части на отход производства ронгалита (ОПР) обеспечивает возрастание прочности коагуляционной структуры в 2-3 раза против образцов 3-5 – при условии, что содержание латекса в смеси составляет 20-35 мас. % (обр. 6-8). Достаточно высокое содержание латекса (35 мас. %, обр. 7), хотя и позволяет получить композицию со значительной мощностью на разрушение коагуляционной структуры (рис. 1, в), приводит к тому, что спустя 24 ч она теряет жизнеспособность (табл. 1). Повышенная концентрация латекса в смеси нецелесообразна и с экономической точки зрения. Подходящим условием распределения в смеси пигмента является отношение модифицированное ЖС:ОПР = 1:1 (рис. 1, а, б), а латекс требуется вводить в композицию в количестве 2025 мас. % при незначительном содержании в ней воды (до 5 мас. %).
Снижение доли модифицированного ЖС за счёт повышения твёрдой фазы до 45 % (рис. 1, г) чревато последствиями в виде снижения жизнеспособности композиций (табл. 1, обр. 9). Спустя 24 ч получить кривые течения не представляется возможным. Это подтверждают теоретические выкладки, свидетельствующие о высокой реакционной способности оксида цинка и цинковой пыли по отношению к водорастворимым силикатам. Наилучшими свойствами обладает образец 6, где содержание латекса находится на уровне ~25 мас.%.
Введение в пигментную часть, дополнительно к мелу и тальку, 50 мас.% золы (обр. 10) приводит к упрочнению коагуляционной структуры во времени. Индекс течения композиции снижается за 1 сут. лишь с 0,22 до 0,16, а константа консистенции – напротив, возрастает в 1,5 раза. При меньшем содержании золы в составе пигментной части (12–25 мас.%, обр. 11, 12) реологические свойства композиций при хранении изменяются незначительно. Химический состав золы-уноса ТЭС во многом близок к каолину (она включает 52-61 % SiO2, 22-27 % Al2O3), что объясняет сходство реологического поведения таких смесей и кривых течения дисперсий «каолин – мел – тальк». На основании реологических исследований и анализа физико-химических свойств отверждённых композиций
Рис. 1. Кривые течения при 20 °С свежеприготовленных (1) и выдержанных в течение 24 ч композиций (2) из натриевого ЖС, модифицированного карбамидом, при различном содержании в них отхода производства ронгалита и ЛБС. Пигментная часть цинксодержащий отход производства ронгалита. а, б – ЖСК:ОПР = 1:1; в ЖСК:ЛБС = 1:1, без добавки воды; г содержание отхода в композиции максимально (45 мас. %). Содержание ЛБС в композиции, мас. %: а – 25; б – 12,5; в 35, г 20
установлено, что содержание золы в пигментной части защитных композиций не должно превышать 25–30 мас.%. Их кроющая способность повышается приблизительно в 2 раза по сравнению с композициями, включающими соединения цинка; твёрдость покрытий достигает 0,47 у.ед. (табл. 1, обр. 11) и, кроме того, проявляется эффект утилизации золы: смеси относят к классу малоопасных веществ. Рекомендуется использовать их в крупных промышленных центрах в случаях, когда воздух содержит много пылевидных частиц и поверхности быстро загрязняются – для защиты элементов из бетона и цемента, расположенных на незначительном расстоянии от земли.
Положительный эффект от введения в неорганическую пигментную часть композиции промышленных отходов проявляется и на многокомпонентных смесях металлов. Так, использование шламовых осадков или паст в составе силикатных композиционных материалов является возможным в виду схожести химического состава отходов и типовых неорганических добавок.
Предлагается утилизировать шламовые пасты без их обезвоживания в технологии производства силикатной краски. Таковые представляют собой смесь щелочестойких пигментов и наполнителей – мела и талька в растворах щелочных силикатов определенной концентрации. Исследования проводили на образцах шламов, взятых с различных электрохимических и гальванических предприятий г. Воронежа (завод «Процессор», завод алюминиевых конструкций). Они имеют пастообразную консистенцию и включают, мас. %: Cu2+ 0,2–2,1; Fe (III) 0,7–6,0; Ni2+ 0,01–0,36; Zn2+ 0,08; Cr (III) 0,03–0,05; Pb2+ 0,01–0,07; Ca2+ 21,5–6,0; вода – остальное. Следовательно, в смеси большей частью присутствуют соединения кальция, железа и, в меньшей степени, меди. Роль соединений железа сводится к тому, что они при взаимодействии с ЖС дают водонерастворимые силикаты и образуют на подложке твёрдые и прочные плёнки. Оксид и гидроксид кальция относятся к добавкам осаждающего типа, обеспечивающим как линейную, так и пространственную полимеризацию силикатов по схеме:
полимеризация
истинный раствор коллоидные частицы (золь)
агрегация конденсация
сетка частиц (гель) ксерогель
В свою очередь, оксиды и гидроксиды меди обладают способностью улучшать защитно-декоративные характеристики силикатных композиций и входят в бактерицидные составы. Были изучены свойства силикатных композиций и покрытий из них на бетонных, стеклянных и металлических пластинах, полученных при замене пигментной части композиций (мел, тальк и Fe2O3) на шламовые осадки электрохимических производств. Разработанные композиции, жизнеспособные 120 сут. при различном соотношении ЖС: модификатор: шламовая паста, отличаются высокой прочностью плёнок при испытании на изгиб и укрывистостью в пределах 110-150 г/м2. Твёрдость покрытий по маятниковому прибору достигает 0,39 у.ед., что на 7–30 % выше таковой для композиций со стандартной пигментной частью. Атомно-абсорбционным и расчётным методом определено содержание тяжёлых металлов в водных вытяжках после истирания отверждённых композиций под действием нагрузки 20 Н. Шестивалентный хром и кадмий в покрытии отсутствуют; согласно токсиколого-гигиеническому паспорту полученная краска отнесена к IV классу опасности (вещества малоопасные). При статическом воздействии влаги на покрытия концентрация загрязняющих веществ в водах, принимаемых в систему канализации, находится в пределах нормативно-допустимых значений.
Гидратированные силикаты натрия, представляющие собой аморфные гранулы диаметром 1-2 нм химической формулы Na2SiO3 · 5Н2О, в смеси с соединениями алюминия, как и ЖС, могут быть использованы для получения новых композиционных материалов цеолитов. Последние применяют в промышленности для очистки сточных вод от ионов тяжелых металлов, газовых потоков от органических компонентов, а также поглощения радионуклидов и других вредных веществ из организма человека. Попытка использовать для получения этих композиционных материалов алюмосиликатных отходов промышленного производства, к сожалению, приводит к получению продукта с невысокой динамической адсорбционной влагоёмкостью, а также низкой механической прочностью гранул (0,3-1,0 МПа) и неудовлетворительной истираемостью их поверхностного слоя. Ранее на основании рентгенофазового анализа и данных ИК-спектроскопии было установлено, что цеолит типа NaA образуется в процессе обработки в вибромельнице соединений, содержащих конституционную воду, – гидратированного силиката натрия, гидроксида алюминия (гидраргиллита) и гидрокремнегеля:
Na2SiO3·5H2O+2Al(OH)3 +SiO2·0,875H2ONa2O·Al2O3·2SiO2·8,875H2O
Прокаливание служит завершающим этапом формирования кристаллической решётки. Выявлено, что вместо гидрокремнегеля можно использовать и диоксид кремния с содержанием основного вещества (SiO2) 96,3 %, тогда соотношение компонентов силикатной смеси также соответствует стехиометрии реакции получения цеолита NaA:
Na2SiO3·5H2O +2 Al(OH)3 + SiO2 Na2O·Al2O3·2SiO2·8H2O
Обработку компонентов можно проводить и в планетарной мельнице; продолжительность процесса сокращается с 30 до 3 мин., однако энергонапряжённость при смешении необходимо увеличить с 5,4 до 200 Вт/г. Процесс в шаровой мельнице протекает в течение 20 ч. После получения гранул диаметром 3-4 мм, их сушки и прокаливания при 450–70 °С удаётся получать продукт формулы Na2O·Al2O3·2SiO2·8H2O с прочностью гранул на раздавливание по торцу 2,3 МПа, что на 15 % превышает аналогичный показатель при использовании соединений гидрокремнегеля, тогда как динамическая адсорбционная влагоёмкость, выраженная в процентах весу цеолита, напротив, снижается на 14 %. Установлено, что такие технические алюмосиликаты могут быть синтезированы без проведения стадии гидротермальной кристаллизации. Это исключает образование избыточных сточных вод и повышает экологичность производства.
Настоящая часть работы защищена заявкой № 2006124498/15 (026566) Российской Федерации; заявл. 07.07. 2006; решение о выдаче патента РФ 16.07.2007.
В четвёртой главе рассматриваются вопросы формирования многокомпонентных смесей из каолина, его активации кислотными и щелочными реагентами и последующего затворения растворами натриевого жидкого стекла, в том числе подвергнутого предварительной модификации карбамидом. Дифрактограмма образца отечественного каолина ООО НПП «Промышленные минералы» (Самарская обл.), взятого в качестве объекта для исследований, показывает, что он включает каолинит (до 95 %) с примесями -кварца и Fe2O3 (рис. 2). Согласно гранулометрическому составу, в исходном образце доля частиц 2,5 мкм составляет 12 %, а преобладающая фракция (34,8 %) включает частицы 10-20 мкм. Таким образом, в данном случае нельзя говорить об использовании тонкодисперсного порошка, однако выявлено, что существенного изменения свойств материала каолина можно добиться за счёт обработки его поверхности органическими кислотами.
Из рис. 3 видно, что при увеличении (до 6 мас. %) в каолиновых суспензиях содержания органических кислот, поступающих с жидкой фазой уксусов, наблюдается увеличение прочности коагуляционной структуры, причём крутизна подъёма N – наибольшая в интервале концентраций 03 мас. %. Прочность коагуляционной структуры в случае, когда в качестве дисперсионной среды выступает виноградный уксус, приблизительно в 2,0–3,5 раза выше по сравнению с образцами, включающими яблочный уксус. Этот факт находится в корреляции с более значимым (в 40 раз) содержанием в первом винной кислоты. Зависимости индекса течения от концентрации органических кислот также имеют максимум в указанном диапазоне СК. Поведение суспензий свидетельствует о том, что при введении уксусов вокруг частиц твёрдой фазы образуется сольватная оболочка, в формировании которой участвуют молекулы органических кислот, являющиеся, как и вода, полярными электролитами, способными взаимодействовать с поверхностью каолинита.