авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 5 |

Физикохимия боросилицидных покрытий и композиционных материалов, полученных золь-гель методом

-- [ Страница 2 ] --
  1. Разработана технология и методика исследования процесса формирования бескислородных покрытий на деталях из тугоплавких сплавов в неравновесных условиях экзотермического взаимодействия.
  2. Физико-химические процессы синтеза бескислородных покрытий в нестационарных условиях протекают с высокой скоростью и завершаются образованием соединений с температурой плавления (разложения) на 500600 °С превышающей температуру активации процесса.
  3. Направленный синтез бескислородных покрытий в оптимальном технологическом режиме обусловлен образованием соединений, фазовый состав и структура которых обеспечивают высокую жаростойкость защитного слоя.
  4. Основными факторами, определяющими характер взаимодействия компонентов бескислородных боросилицидных композиций и фазообразование в системе подложка — покрытие, являются: температура и время активации процесса, состав и давление атмосферы, физико-химические свойства, масса и геометрические характеристики детали, параметры установки синтеза.
  5. Синтез бескислородных покрытий, в условиях нестационарного теплообмена и пониженного атмосферного давления, сопровождается испарением (сублимацией) компонентов композиции (Cr, Si, В), удалением адсорбированных газов и влаги, термодеструкцией остатков дисперсионной среды, содержащей - алкилбензолсульфонат СnH2n+1 C6H4SO3Na (n = 1018), Na2SO4 и Na2SO3, продуктов разложения кристаллогидратов МоО25(ОН)510, газообразных продуктов взаимодействия, которые инициируют процессы формирования фазового состава и структуры жаростойких соединений.
  6. Стадии технологического этапа подготовки и закрепления бескислородной композиции Cr–Si–Mo–NbВ на поверхности подложки, связанные с диспергированием компонентов и гомогенизацией суспензии, сопровождаются механохимическими и химическими процессами, активирующими взаимодействие дисперсной фазы и дисперсионной компоненты.
  7. Синтез жаростойких бескислородных покрытий из композиций, содержащих халькогениды молибдена MoS2 и MoSe2, сопровождается явлениями, которые сопутствуют процессам образования наноразмерных частиц в условиях термического разложения химических соединений, а синтезированные покрытия обладают повышенной жаростойкостью.
  8. Разработана промышленная технология бескислородных покрытий, которые могут использоваться в качестве технологической защиты тугоплавких конструкционных сплавов при выполнении операций пластической деформации подложки - ковки, штамповки и др.
  9. Разработана технология золь-гель синтеза, композиционного керамического материала из дисперсного оксида алюминия Al2O3 (-, - формы), капсулированного в стекловидную оболочку из кордиеритоподобной золь – гель композиции 2CoO2Al2O35SiO2, основанная на формировании устойчивых дисперсий, состоящих из дисперсной составляющей и золей стеклообразующих композиций, в состав которых входит ТЭС, легирующие и стабилизирующие добавки.
  10. Формирование композиционного стеклокерамического материала из дисперсного оксида алюминия Al2O3 (-, - формы), капсулированного в стекловидную оболочку, в условиях воздействия воздушной электродуговой плазмы сопровождается процессами аморфизации и стабилизации промежуточных метастабильных фаз оксида алюминия: - и - Al2O3.

Личный вклад соискателя состоял в постановке задачи, выборе цели и объектов исследования, разработке и адаптации методик эксперимента к конкретным системам. Представленные в диссертации результаты получены непосредственно автором, либо под его руководством (соруководством). Сотрудники, имеющие отношение к теме диссертации представлены в качестве соавторов публикаций.

Апробация работы.

Результаты исследований апробировались на 50 Всесоюзных, Всероссийских, Республиканских и Международных конференциях, конгрессах, симпозиумах, и совещаниях. Основные результаты работы были представлены: на Межотраслевой научно-технической конференции (ВИАМ, Москва, 1984); ХХII-й Всесоюзной сессии «Защитные покрытия в машиностроении» (Киев, 1987); XIV Менделеевском съезде по общей и прикладной химии, (Москва, 1989); Всесоюзной конференции «Перспективные направления развития науки и технологии силикатов и тугоплавких неметаллических материалов» (Днепропетровск, 1991); на Конгрессе «Защита – 92» (Москва, 1992); International Simposium on Sol-gel Science and Technology (Los Angeles, Biltmore, 1994); 9-th International Workshop «Glasses, Ceramics, Hybrids and Nanocomposites from Gels» (Sheffield, 1996); на VII Международной конференции «Высокотемпературная химия силикатов и оксидов» (Санкт-Петербург, 1998); на II Съезде Российского керамического общества «Проблемы ультрадисперсного состояния» (Санкт-Петербург, 1999); 11th International Workshop «Glasses, Ceramics, Hybrids And Nanocomposites From Gels» (Padova, Italy, 2001); на III Межународной конференции «Электрическая изоляция – 2002» Санкт – Петербург, 2002); на Международном симпозиуме по теоретической и прикладной плазмохимии (Иваново-Плес, 2002); на VIII Всероссийском совещании «Высокотемпературная химия силикатов и оксидов» (Санкт-Петербург, 2002); Topical Meeting of the European Ceramic Society «Nanoparticles, Nanostructures & Nanocomposites» (Saint Petersburg, Russia 2004); Topical Meeting of the European Ceramic Society. Structural Chemistry of Partially Ordered Systems, Nanoparticalls and Nanocomposites, 2006, Saint-Petersburg. Russia.

Публикации.

Материалы диссертации опубликованы в одной монографии, 76 статьях и 45 тезисах докладов.

Объём и структура диссертации.

Диссертация состоит из введения, 8 глав, выводов, библиографии и приложений. Работа изложена на 351 странице машинописного текста, содержит 108 рисунков и 43 таблицы. Список литературы включает 400 наименований.

Краткое содержание диссертации.

Во Введении обоснована актуальность диссертационной работы, выбор темы, определены цели и задачи исследования. Представлены основные положения, выносимые на защиту.

В Главе 1 «Жаропрочные материалы и средства защиты от высокотемпературной газовой коррозии», состоящей из трёх основных разделов, представлен обзор литературных источников и исследований, посвящённых данной проблематике.

В первом разделе приводится краткий анализ состояния разработок в области создания жаропрочных материалов для силовых установок.

Во втором разделе рассматриваются характерные особенности газовой коррозии тугоплавких металлов в условиях высоких температур. Показано, что к наиболее перспективным конструкционным материалам с высокими механическими характеристиками в температурном интервале, который превышает 1200 °С, относятся ниобиевые сплавы.

Третий раздел посвящён сравнительному анализу состояния разработок в области создания средств защиты тугоплавких конструкционных сплавов от высокотемпературной газовой коррозии. Приведённые данные свидетельствуют об эффективности покрытий как средства предотвращения окисления подложки. Сравнение различных методов формирования защитных покрытий показывает, что особый интерес, в силу универсальности и высокой технологичности, представляет метод синтеза бескислородных покрытий в режиме экзотермического взаимодействия из дисперсных композиций на основе компонентов (Mo, Cr, Ta, Nb, Si, B и др.), образующих жаростойкие соединения с температурой плавления значительно превышающей температуру активации процесса синтеза.

Прямой синтез бескислородных покрытий из дисперсных композиций на основе элементарных Mo, Cr, Ta, Nb, Si, B и др. впервые в отечественной и, по–видимому, в зарубежной практике был осуществлён группой сотрудников Института химии силикатов РАН (АН СССР) под руководством д. т. н., профессора А. И. Борисенко. Авторы показали, что образующаяся в системе Mo—Cr—Si (рис. 1) в условиях эвтектического плавления хрома и кремния (1355 °С) жидкая фаза инициирует процессы взаимодействия компонентов дисперсных композиций, которые завершаются формированием тугоплавких и жаростойких соединений с температурой плавления на 500600 °С, превышающей температуру активации экзотермической реакции.

На этапе разработки технологии синтеза бескислородных жаростойких покрытий неординарность проблемы, отсутствие опыта и научно обоснованных методов явились причиной преобладания эмпирического подхода при решении поставленной задачи. Практические результаты, базирующиеся на общих представлениях о характере физико-химических процессов, далеко опередили понимание механизма явлений, необходимое для создания промышленной технологии формирования покрытий (рис. 2).

В тоже время анализ экспериментальных данных, полученных при исследовании физико-химических процессов на разных стадиях взаимодействия в бескислородных композициях на этапе разработки технологии формирования покрытий и результатов высокотемпературной эксплуатации показал необходимость проведения более глубокого изучения основных этапов синтеза и определения факторов, характеризующих оптимальные режимы высокотемпературной стадии, протекающей в неравновесных условиях.

Исследования, которым посвящена диссертационная работа, акцентировались на последовательном изучении характера формирования бескислородных покрытий, в системе Cr—Mo—Nb—Si—B, рекомендованной для практического применения, при защите подложки из ниобиевого сплава 5ВМЦ. Выбор объекта определялся возможностью использования данных, полученных автором диссертации, на этапах отработки технологии в лабораторных и производственных условиях, включающих результаты стендовых испытаний.

В Главе 2 «Низкотемпературная стадия формирования бескислородных покрытий», которая состоит из двух основных разделов, рассмотрен низкотемпературный этап формирования покрытий в системе Cr—Si—Mo—Nb—B, связанный с получением суспензий, диспергированием и гомогенизацией поликомпонентных бескислородных композиций, процессом нанесения слоя покрытия на поверхность подложки.

Данные исследований указывают на то, что низкотемпературная стадия формирования бескислородных покрытий сопровождается рядом явлений, которые играют важную роль в предыстории синтеза защитного слоя.

Установлено, что процессы диспергирования и гомогенизации в системе Cr—Mo—Nb—Si—B характеризуются механохимическим и химическим взаимодействием компонентов дисперсной составляющей, дисперсной фазы и дисперсионной составляющей, что может оказывать как позитивное, так и негативное влияние на формирование фазового состава покрытий. В результате механохимического взаимодействия компонентов на стадии усреднения состава дисперсной составляющей возможно образование соединений, присутствие которых понижает химическую активность системы и отрицательно влияет на характер взаимодействия компонентов в условиях высокотемпературного синтеза.

Формирование шликерных композиций (суспензий), состоящих из дисперсной фазы и дисперсионной среды (раствор анионного ПАВ - алкил бензолсульфоната натрия) сопровождается окислением дисперсной компоненты и образованием водорастворимых соединений, в частности гидроксидов молибдена переменного состава, которые играют значительную роль в процессе высокотемпературной стадии формирования покрытий.

Технологические аспекты нанесения и закрепления бескислородных композиций на поверхности подложки рассматриваются в разделе 2.2. второй главы. Опыт промышленного использования суспензионно-обжиговой технологии синтеза бескислородных защитных покрытий показал универсальность и технологичность суспензионного метода нанесения покрытий. Однако используемая технология низкотемпературной стадии формирования покрытий из суспензий методами погружения и пульверизации имеет ряд недостатков, одна из первопричин которых кроется в недостаточной седиментационной устойчивостью суспензии, обусловленной большим интервалом плотности компонентов дисперсной фазы (Сг, Мо, Nb, Si) и широким разбросом гранулометрических характеристик. Это приводит к образованию структурных дефектов и фазовых неоднородностей в защитном слое, снижая жаростойкость и эксплуатационные характеристики покрытий. Поэтому была рассмотрена возможность альтернативной замены компонентов композиции на бескислородные неогранические соединения, которые обладают более низкой плотностью, высокой дисперсностью и удельной поверхностью.

Экспериментальная и технологическая проработка показала, что в наибольшей степени этим качествам отвечают сульфиды, селениды, силициды и гидриды металлов V – VI -а гр. Результаты исследования характера влияния замены дисперсного молибдена, в композиции (Cr—Mo—Nb—Si—B), на MoS2, MoSe2 и MoSi2, на свойства синтезированных покрытий, подтвердили обоснованность сделанных предположений. Было установлено, что введение данных соединений, за исключением дисилицида молибдена, инициирует процессы формирования покрытий с улучшенной структурой и фазовым составом, в котором преобладают соединения, определяющие высокую жаростойкость защитного слоя.

Перспективность использования халькогенидных соединений в качестве составной части поликомпонентных бескислородных композиций была подтверждена исследованиями в области возможного использования метода электрофоретического осаждения для формирования бескислородных покрытий из поликомпонентных композиций, которые показали, что в условиях совместного электрофоретического осаждения компонентов дисперсной композиции в системе Si - MoS2 на выходе можно получать гомогенизированный осадок необходимой толщины в пределах допустимых отклонений от заданного состава.

В Главе 3 «Высокотемпературный синтез бескислородных покрытий», состоящей из пяти разделов, представлены данные, характеризующие составы и свойства бескислородных покрытий, синтезированных в условиях прямого синтеза, физико-химические особенности формирования бескислородных высокоэнтальпийных соединений и покрытий при пониженном остаточном давлении в области высоких температур, аппаратурное оформление условий высокотемпературного синтеза.

Анализ термограмм высокотемпературного синтеза бескислородной композиции в системе Cr—Mo—Nb—Si—B и визуальные наблюдения показали, что температура активации процесса находится в интервале 13001500 °С. Процесс характеризуется наличием значительного экзотермического эффекта, который фиксируется прямыми термопарными измерениями, охватывает температурный интервал 13001700 °С и достигает своего максимума на пятой секунде с момента начала взаимодействия компонентов системы.

Пример синтеза диборида циркония ZrB2 (-°298 = -76,7 ккал/моль) при тепловом воспламенении в условиях внешнего неизотермического разогрева, показывает, что процессы в аналогичных системах могут протекать в твёрдой фазе и характеризуются чрезвычайно высокой активностью. Термопарные измерения, выполненные в процессе горения образца из механической дисперсной смеси циркония и бора (соотношение 1:2, ат. %) показали, что в момент горения, скорость изменения температуры, на участке монотонного роста, составила (20103 °С/с), а скорость распространении волны горения 35 мм/с. Процесс взаимодействия компонентов в объёме 25 см3 завершается образованием практически чистого диборида циркония в течение 11,5 с.

Таким образом, при исследовании характера тепловых процессов, сопровождающих стадию высокотемпературного синтеза бескислородных покрытий было установлено, что формирование силицидов и боридов может протекать с высокими скоростями и сопровождаться значительными тепловыми эффектами.

Синтез покрытий на основе бескислородных композиций осуществляется, как правило, в вакууме (Ратм. ост.=110-1Па). Температурный диапазон, определённый в экспериментальных условиях, составляет 14501600 °С. Временной интервал термообработки находится в пределах нескольких десятков секунд, определяется массой изделия и параметрами высокотемпературной установки.

Характер формирования бескислородных покрытий в условиях высокотемпературного синтеза при пониженном остаточном давлении связан с количественными изменениями соотношения компонентов по сравнению с исходным составом композиции. Это обусловлено испарением ряда компонентов композиции и продуктов термодеструкции, образующихся соединений, взаймодействием компонентов композиции и системы подложка - покрытие в целом.

Один из разделов третьей главы посвящён изучению особенностей характера формирования бескислородных покрытий в экспериментальных условиях. Опыт показал, что переход от исследований к условиям производства может сопровождаться ухудшением жаростойкости покрытий. Анализ физико-химических процессов, сопровождающих высокотемпературную стадию экспериментального «экспресс» синтеза покрытий на основе боросилицидных композиций, в установке с вакуумируемым объёмом 2 л и вольфрамовым нагревательным элементом позволил выявить основную причину этого явления, которая обусловлена характером формирования боросилицидных покрытий в условиях ограниченного пространства.

На основании анализа результатов исследования физико-химических процессов, сопровождающих формирование бескислородных покрытий в экспериментальных условиях, обнаружено явление переноса продуктов окисления вольфрама с поверхности нагревательного элемента в зону синтеза покрытия. Полученные данные позволили установить, что процесс завершается образованием на поверхности формируемого слоя соединений, замедляющих процессы испарения компонентов основной части покрытия и диссоциацию продуктов синтеза.

В Главе 4 «Физико-химические процессы, сопровождающие высокотемпературный синтез бескислородных покрытий, система Cr—Mo—Nb—Si—B, в условиях оптимизации технологического процесса», состоящей из четырёх разделов, рассмотрены результаты исследования физико-химических явлений, сопровождающих высокотемпературный синтез бескислородных покрытий в условиях оптимизации технологического процесса.

В качестве критерия, на основании которого определялся оптимальный режим высокотемпературного синтеза бескислородных покрытий, были использованы данные испытаний на жаростойкость образцов с трёхслойным покрытием, время активации синтеза которого составляло 30 с, 1 мин, 1,5 и 3 мин (диапазон температур 14001800 °С через 50 °С). Данные эксперимента подтвердили эмпирически установленный факт существования определённых временных и температурных интервалов формирования покрытий, обладающих максимальной жаростойкостью. Для исследуемых образцов оптимальный режим высокотемпературного синтеза находился в пределах 1,5 мин и 1450 °С соответственно (рис. 3).



Pages:     | 1 || 3 | 4 |   ...   | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.