авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 2 | 3 || 5 |

Формирование и наведение лазерных пучков с помощью внутрирезонаторных пространственно - временных модуляторов света

-- [ Страница 4 ] --

В разделе 3.3 приведены результаты исследования порогов разрушения и морфологии разрушений полированных образцов керамики ЦТСЛ состава 9.75/65/35 при размерах пятна воздействия ~ 1.6 мм по уровню 1/е для лазерного импульса 35 нс с длиной волны 1.054 мкм по методикам, отработанным в [16,26,27]. На выходе лазерного усилителя на стекле излучался лазерный пучок с равномерным пространственным профилем диаметром 3 см и энергией до 10 Дж. Диафрагма вырезала из пучка центральную наиболее равномерную часть диаметром 1.2 см. Излучение фокусировалось линзой на испытываемый отполированный образец керамики. Часть пучка отражалась от клинового делителя до образца, проходила через фокальную диафрагму и попадала на измеритель энергии. Изображение фокальной плоскости пучка с диафрагмой регистрировалась ПЗС - матрицей цифровой телекамеры VVS 522. Разрушения образца регистрировались второй камерой, установленной на микроскоп. Регистрировалось распределение плотности энергии, и сопоставлялись этим плотностям полученные картины разрушения. Регистрация поверхностей образца до воздействия и после него позволяла установить связь дефектов с появляющимися разрушениями. Положение места воздействия пучка на образец было заранее известно. Полученная гистограмма показывает, что порог разрушения равен 11±1 Дж/см2.

В разделе 3.4 приведены конструктивные особенности разработанных образцов внутрирезонаторных электроуправляемых ПВМС на основе ЦТСЛ 9.75/65/35, работающих на квадратичном электрооптическом эффекте, и результаты расчета электрических полей с помощью компьютерной программы ELCUT12. Программа моделирует двумерные поля методом конечных элементов. Программа ELCUT применяется для анализа линейных электростатических полей в плоской и осесимметричной постановках. На рисунке 8 показано распределение электрического поля в поперечном сечении линеек ПВМС канального типа и с двухсторонними заглубленными в подложку электродами. Сплошные линии на рисунках – линии одинакового потенциала, штриховые линии – векторы напряженности электрического поля.

-------------------------------------------------------------------------------------

12. ПК “ТОР” (СПб). http://elcut.ru

Оттенки серого показывают зоны с одинаковой напряженностью электрического поля. Направление распространения модулируемого светового излучения показано стрелкой.

Проведенные расчеты полей позволяют определить пропускание модулятора в каждой точке поперечного сечения и оптимизировать их геометрию

.

В разделе приводятся экспериментально полученные профили пропускания пикселем модулятора излучения для различных напряженностей поля. На рисунке 9 приведена фотография некоторых ПВМС, разработанных и изготовленных в НИИКИ ОЭП в результате проведенных исследований.

В разделе 3.5 рассмотрены схемы управления работой ПВМС, разработанные в работах [28,30]. Электрическим эквивалентом элемента (пикселя) ПВМС является емкость. Включить данный элемент ПВМС - означает подать на его электроды разность потенциалов, все остальные электроды должны находиться под одинаковым потенциалом: до включенного пикселя под напряжением источника питания, после - заземлены. Известны два типа электронных ключей: 1) двойной ключ, содержащий заряжающий и разряжающий транзисторы для управления одним пикселем. При его использовании требуется деление каждого пикселя управляющим электродом на две части. Преимуществом двойного ключа является независимость работы коммутируемых пикселей, недостатком увеличение дифракционных потерь и сложность формирования нулевой моды лазера; 2) последовательное соединение зарядного и разрядного ключей, при котором отдельные пиксели заряжаются через свои транзисторы. В таком соединении ключей устранена необходимость в дополнительном электроде, но переключение пикселей влечет за собой переключение всех транзисторов. Нами используется второй вариант электронных ключей.

Раздел 3.6 посвящен результатам экспериментального исследования оптического контраста модуляторов. Образцы ЦТСЛ имеют малую величину остаточного двулучепреломления и пропускание ими излучения в видимом или ближнем ИК-диапазоне при установке между скрещенными поляризаторами составляет ~5000:1. Контраст модуляторов могут уменьшать несколько факторов: неточная установка величины управляющего напряжения; неоднородность электрического поля между электродами; наведенное двулучепреломление из-за превышения режимов эксплуатации; возникновение пьезоэффекта при коротком управляющем импульсном воздействии, который приводит к появлению пропускания излучения соседними пикселями.

В статическом режиме при скрещенных поляризаторах оптический контраст превышает величину 2000:1 и более чем на порядок превышает контраст, достигаемый при параллельной установке поляризаторов. Этот факт легко объясняется наличием неточностей в геометрии модуляторов (разброс ширины электродов, величины заглубления и т.д.), что приводит к разбросу U/2 для различных зон одной линейки и различных линеек модулятора. Оптический контраст модулятора при засветке широким пучком с большим угловым раствором (20-300) и при фокусировке излучения на один элемент в малом угле изменяется менее чем в два раза. Показано, что в динамическом режиме контраст соседних пикселей уменьшается в 3-5 раз.

Глава 4 посвящена разработке и исследованию лазера на АИГ:Nd3+. В разделе 4.1 рассмотрена оптическая схема сопряженного резонатора для двухкоординатного сканирования пучка [28-30]. Принцип работы анализируется с помощью матриц Джонса. ПВМС выполнен в виде двух разнесенных в пространстве одномерных электроуправляемых пластин (рисунок 10) с ортогонально ориентированными электродами и под 450 к азимуту наибольшего пропускания поляризатора. Пластины установлены в сопряженные оптические плоскости вблизи зеркал резонатора и, вследствие изображающих свойств резонатора, образуют двумерную "матрицу". Схема лазера приведена на рисунке 10, на врезке рисунка показан ход внеосевой моды резонатора. Генерация осуществляется на пересечении включенных линеек пластин ПВМС.

При отсутствии разности потенциалов между электродами пластин, генерация лазера блокируется системой “поляризатор - пластина /4 - зеркало резонатора”.

В разделе 4.2 приведены результаты исследований характеристик излучения лазера в импульсном, импульсно-периодическом и пакетно-импульсном режимах работы. Последний режим интересен тем, что позволяет получить лазерное изображение объектов при локации. При работе в импульсном режиме работы достигнута генерация излучения по всему рабочему полю ПВМС. Энергия генерации 10 …600 мкДж, она регулируется величиной накачки и величиной напряжения, подаваемой на модулятор. При увеличении выходной энергии до величин, превышающих 0.8 мДж, наблюдается появление разрушений электроуправляемой пластины модулятора, которая установлена вблизи 100% зеркала.

Длительность импульса генерации - 50 нс при использовании модулятора добротности на основе кристалла LiF в резонаторе. При отсутствии дополнительного затвора лазер генерирует импульсы с длительностью 150 - 250 нс (электрооптическим затвором в этом случае является сам ПВМС). Получена генерация излучения в любом выбранном направлении, заданном пикселем ПВМС, с частотой повторения 10 Гц.

Приведены результаты исследования генерации “пакетов” импульсов излучения лазера в разных направлениях, заданных программой сканирования. Этот режим интересен тем, что позволяет получить на выходе усилителя пакет моноимпульсов с энергией сопоставимой с энергией свободной генерации. Для накачки активного элемента в этой серии экспериментов использовался импульс накачки с длительностью 1 мс. Эксперименты показали, что не представляет особой сложности получить “пакет” из 20 - 30 импульсов генерации, следующих с частотой 50 - 100 кГц в одном из выбранных направлений.

Более сложной оказалась задача получения “пакета” импульсов, сканирующих пространство в различных направлениях. Неодинаковые амплитуды импульсов генерации в данном режиме работы связаны не только с различием порога генерации в поле сканирования, с разбросом значений U/4 для различных линеек ПВМС, но также и с величиной энергии генерации предыдущих импульсов в “пакете”. Генерируемые моды сопряженного резонатора частично занимают один и тот же объем активной среды, и на величину амплитуды импульса в “пакете” сказывается не только энергия предыдущего импульса, но и его направление. Показано, что использование для накачки лазера импульса тока сформированного разрядом искусственной длинной линии и введение отрицательной обратной связи (раздел 4.3) по амплитуде импульсов в реальном времени позволяет получить “пакеты” из 50-100 импульсов излучения в заданных направлениях. Для реализации отрицательной обратной связи в резонатор устанавливался электрооптический затвор на кристалле танталата лития и дополнительный поляризатор с ортогонально ориентированным азимутом наибольшего пропускания. Сигнал обратной связи снимался с коаксиального фотоэлемента ФЭК47.

В разделе 4.4 приведены результаты исследования характеристик излучения лазере с непрерывной ламповой накачкой. При непрерывной накачке готовность лазера с электроуправляемым ПВМС к адресации излучения к произвольному пикселю не превышает 3 - 4 мкс в любой заданный момент времени. Кроме того, при работе в таком режиме значительно проще управлять величиной энергии импульсов излучения, что приводит к увеличению надежности работы лазера и ПВМС. Были проведены исследования по реализации однокоординатного сканирования излучения твердотельного лазера с непрерывной накачкой. Проведению этой работы способствовала разработка ПВМС с двухсторонними заглубленными в материал подложки электродами, обладающими малыми потерями излучения по сравнению с ПВМС, имеющими электроды канального типа. В отличие от импульсной накачки, в режиме непрерывной ламповой накачки в активном элементе возникает короткофокусная тепловая линза, наличие которой необходимо учитывать при расчете параметров сопряженного резонатора. Параметры резонаторов рассчитывались методами матричной оптики. Было реализовано однокоординатное сканирование излучения лазера на АИГ:Nd3+ с непрерывной накачкой с помощью внутрирезонаторного ПВМС на основе ЦТСЛ с размером пикселя 450 мкм. При длительности импульса генерации 150 - 200 нс достигнута энергия импульсов генерации до 500 мкДж. Получены “пакеты” импульсов излучения лазера при частоте следования импульсов в пакете от 1 до 10 кГц и при частотах следования “пакетов” импульсов до 200 Гц (рисунок 11).

В разделе 4.5 приведена оптическая схема лазерного резонатора с лучевой разгрузкой ПВМС. Схема лазера приведена на рисунке 12. В сопряженном резонаторе лазера используется одна линза сферическая, вторая цилиндрическая [31]. Такая схема лазера позволяет увеличить энергию выходного импульса при однокоординатном сканировании излучения за счет увеличения работающей зоны пикселя ПВМС вдоль электродов и дополнительной лучевой разгрузки ПВМС с помощью поляризатора 7 и четвертьволновой пластинки. Четвертьволновая пластина 10 за сферическим зеркалом развернута так, что только малая часть излучения отражается от поляризатора для создания обратной связи в резонаторе. Большая часть излучения выводится из резонатора через поляризатор 7. Благодаря этим двум факторам выходная энергия лазера увеличилась почти в 20 раз и составляет 10 мДж при длительности импульса 200 нс. В разделе рассмотрены характеристики разработанного лазерного маркера [32] на основе схемы рисунка 12, приведены образцы маркировки различных материалов.

В разделе 4.6 приведены результаты исследования характеристик лазера с внутрирезонаторным сканированием, активный элемент которого накачивается линейками лазерных диодов с импульсной световой мощностью 600 Вт. Экспериментально показано, что при частоте следования свыше 250…300 Гц на работу лазера начинает влиять тепловая линза и деполяризация излучения. Установлен параболический вид теплового поля в активном элементе, для расчета резонатора можно использовать матрицу Джонса, полученную в работе [33]. При использовании схемы рисунка 12 получена энергия сканирующих моноимпульсов до 3 мДж.

Получены также “пакеты” импульсов в различных направлениях (по 3 в каждом импульсе накачки длительностью 250 мкс).

Глава 5 посвящена исследованию лазерных систем с внутрирезонаторным наведением излучения на АИГ:Nd3+ в том числе с ОВФ излучения (раздел 5.1). Задача актуальна для разработки лазерных локаторов на основе внутрирезонаторного сканирования. Рассмотрены алгоритмы работы и преимущества лазерных локаторов [35] с внутрирезонаторным наведением излучения, приведена схема локатора космического базирования и алгоритмы его работы (раздел 5.2). Предложена схема и рассчитаны энергетические и габаритные характеристики мощного лазера на неодимовом стекле с энергией в импульсе 600 - 700 Дж с внутрирезонаторным управлением пучка (раздел 5.3). Вычисления основаны на характеристиках разработанной элементной базы, полученных экспериментальных результатах и опыте построения аналогичных систем. Показано, что благодаря использованию разработанного ПВМС не требуется сложного предварительного усилителя и достаточно легко обеспечивается изоляция. Рассмотрены особенности формирования пространственного профиля пучка в лазерных системах с внутрирезонаторным наведением.

В разделе 5.4 приведены результаты исследований, направленных на создание лазерного резонатора с двухкоординатным управлением диаграммой направленности, позволяющие установить обе пластины модулятора у одного из зеркал резонатора и осуществить режим лучевой разгрузки модуляторов света. Разработана оптическая схема резонатора, которая условно названа схемой с дополнительной ретрансляцией плоскости изображения ПВМС. Разработанная схема позволяет использовать пиксели ПВМС любого малого размера. Для ПВМС с пикселем большого размера, с которым в резонаторе необходимо использовать длиннофокусные линзы, предложена схема с установкой 900 кварцевой пластины между ортогонально ориентированными пластинами ПВМС. Показано, что в этом случае пластины ПВМС должны быть установлены между параллельно ориентированными поляризаторами. Экспериментально продемонстрирована работоспособность резонаторов.

Глава 6 посвящена исследованию характеристик излучения лазеров на других активных средах с внутрирезонаторным управлением диаграммы направленности. Рассмотрены (раздел 6.1) резонаторы и особенности работы лазера на парах меди (ЛПМ) [37, 38]. Лазер на парах меди излучает на двух недалеко расположенных резонансных линиях на метастабильные уровни с длинами волн 510,6 нм (зеленая линия) и 578,2 нм (желтая линия). Инверсная населенность возникает при коротких электрических разрядах с длительностью порядка десятков наносекунд. Частота следования импульсов 10-20 кГц, их длительность составляет величину ~10 нс. Время жизни инверсной населенности мало и составляет несколько сотен наносекунд. Мода резонатора формируется за малое количество проходов излучением резонатора. Получена управляемая генерация ЛПМ на уровне мощностей излучения 0.2- 0.5 Вт. Экспериментально продемонстрирована возможность спектральной и поляризационной поимпульсной кодировки излучения ЛПМ.

Рассмотрены результаты (раздел 6.2) исследований характеристик излучения нецепного химического электроразрядного DF лазера (диапазон длин волн генерации 3.5 - 4.1 мкм), направленных на выяснение возможностей внутрирезонаторного управления его диаграммой направленности. Приводятся результаты исследований по созданию элементной базы резонатора лазера. Описаны результаты исследования характеристик излучения лазера при управлении диаграммой направленности по одной и двум координатам [39, 40], результаты исследования усиления излучения лазера на части активной среды.

На рисунке 14 приведена схема резонатора лазера с двухкоординатным сканированием, а на рисунке 15 - осциллограмма импульса генерации лазера.

Отмечается, что при исходной энергии плоского короткого резонатора 50 мДж, при однокоординатном сканировании получены импульсы с энергией 16-18 мДж с возможностью увеличения энергии до 30 – 35 мДж при просветлении поверхностей ПВМС. При двухкоординатном сканировании получена энергия импульсов 6-8 мДж, ограниченная лучевой прочностью зеркал и модуляторов. Показана возможность увеличения энергии импульсов при усилении их на части активной среды до 20-23 мДж.

 Схема сопряженного резонатора-12

Рисунок 14. Схема сопряженного резонатора DF - лазера: 1 - многослойное диэлектрическое “глухое” зеркало резонатора R = 98%; 2, 13 – пластины ПВМС; 3, 12 – четвертьволновые пластинки из кристалла сапфира; 4 – плоское поворотное зеркало; 5, 9 – сферические 100% зеркала резонатора с фокусом 750 мм; 6 – пластины ЦТСЛ под углом Брюстера; 7 – окна разрядной камеры из флюорита; 8 – разрядный промежуток 14 20 мм с активной средой; 10, 11 - поворотные плоские зеркала; 14 - выходное зеркало резонатора (плоско- параллельная пластинка из ЦТСЛ); 15 – сферическое внерезонаторное зеркало с фокусом 1200 мм. На врезках показаны отпечатки пучков на черной фотобумаге при сканировании пучка по горизонтали и вертикали, а также по диагонали.

В заключении подводятся основные итоги работы. В приложении 1 рассмотрена краткая история открытия сегнетоэлектриков, в приложении 2 приведен обзор свойств прозрачной сегнетокерамики как для объемного материала, так и для тонких пленок ЦТСЛ. В приложении 3 рассмотрены особенности юстировки сопряженного резонатора.

Результаты работы, на основе которых сформулированы защищаемые положения



Pages:     | 1 |   ...   | 2 | 3 || 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.