авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 || 4 | 5 |

Формирование и наведение лазерных пучков с помощью внутрирезонаторных пространственно - временных модуляторов света

-- [ Страница 3 ] --

11. Зельдович Б.Я., Пилипецкий Н.Ф., Шкунов В.В. Обращение волнового фронта. М.: Наука, 1985, 240 с.

Линейно поляризованный пучок ЗГ на фосфатном неодимовом стекле проходил через усилитель и разворачивался с постоянной скоростью с помощью дефлектора на танталате лития с квадрупольными электродами примерно на 8 дифракционных углов () с различными скоростями: 0,2 / нс (быстрая развертка) и 0,07 / нс (медленная развертка). Было обнаружено, что при быстрой развертке и использовании СС14 в качестве ВРМБ - активной среды, дальняя зона отраженного пучка разбивается на ряд фрагментов, т. е. на развертке есть области, где нарушается ОВФ. С ростом энергии падающего пучка от 50 до 200 мДж появляется сначала одно пятно, потом два и т. д. При медленном сканировании наблюдается гладкая непрерывная развертка во всем диапазоне энергий.

Так как для СС14 время затухания гиперзвука 1 нс, то ОВФ сканирующего пучка реализуется тогда, когда время t его поворота на дифракционный угол лежит в интервале от 5 до 15, т. е. при выполнении условия стационарности. Для стекла ГЛС6 и на медленных развертках t 3 ( 5 нс) это условие не выполняется. В дальней зоне отраженного пучка видны провалы, картина похожа на ту, которая наблюдалась на быстрых развертках для СС14.

С увеличением скорости сканирования качество ОВФ еще более ухудшается. В качестве активной среды на быстрой развертке SiCl4 ведет себя существенно хуже, чем СС14. При медленном сканировании развертка отраженного пучка напоминает по характеру быструю развертку на СС14, только провалы интенсивности не такие глубокие. Картина медленной развертки для SiCl4 выглядит существенно лучше, чем для стекла. Это позволяет сделать вывод о том, что для SiCl4 время затухания гиперзвука лежит в диапазоне = 1… 5 нс.

Коэффициенты отражения ВРМБ - зеркал на основе используемых сред имеют меньшую величину, чем для пучков, имеющих стационарный волновой фронт. Сравнение временных форм падающего и отраженного импульсов показывает, что они достаточно хорошо повторяют друг друга за исключением мелких модуляций в отраженном импульсе. Характерных провалов, регистрируемых в дальней зоне отраженного пучка при быстрой развертке, на временной форме импульса нет.

Для детального выяснения такого необычного характера отражения сканирующего пучка была проведена регистрация дальней зоны отраженного пучка на скоростном фоторегистраторе “Агат”. На рисунке 5 представлена характерная фотография экрана фоторегистратора, когда развертка отраженного пучка разбивалась на ряд фрагментов. Сканирование осуществлялось в режиме быстрой развертки, в качестве среды использовался четыреххлористый кремний. Видно, что излучение как бы “перескакивает” с одного направления на другое без прерывания отражения во времени, причем существуют моменты времени, когда отражение идет сразу в двух направлениях. При этом эффективность отражения в предыдущем к этому моменту времени направлении уменьшается, а в последующем - увеличивается.

Непрерывность этого рассеяния во времени обусловлена тем, что падающий и отраженный пучки проходят практически по одному и тому же объему в предфокальной области во все время сканирования. Возникающая в предфокальной области гиперзвуковая голограмма (отражающая в определенном направлении в какой-то момент времени) из-за инерционности процесса сохраняется некоторое время после исчезновения затравочного для ее образования излучения из фокальной области. До образования новой голограммы, соответствующей новому ОВФ – направлению, она может поддерживать рассеяние в направлениях, не соответствующих обратному для данного момента времени направлению падающей волны, но лежащих в плоскости развертки. Такой характер отражения и был зарегистрирован с помощью фоторегистратора. Используя это явление можно оперативно оценивать время затухания гиперзвука для ВРМБ активных сред.

В разделе 1.3 рассматриваются особенности лазерных систем с внутрирезонаторными пространственными модуляторами света.

Отмечается, что для увеличения поля зрения системы требуется установка усилительных каскадов и элементов развязки в плоскости выходного зрачка ЗГ. Для этого требуется установка ретрансляторов между всеми каскадами усиления, по крайней мере, между каскадами, имеющими небольшой световой диаметр. Направление излучения в ЗГ и усилителях зависит от включенного пикселя ПВМС. Запасенная в активном элементе ЗГ энергия используется только частично, и ее доля зависит от угла поля зрения системы, размера пикселя ПВМС, длины и диаметра активного элемента. С точки зрения КПД лазеров, целесообразно использование лазерных систем с полем зрения ЗГ, не превышающим нескольких угловых градусов.

Изменение направления излучения ЗГ в пространстве осуществляется с помощью выходного внерезонаторного объектива 8 (рисунок 6). Угловое поле сканирования равно (для углов несколько градусов) = T / F, где T - размер активной зоны ПВМС, F - фокусное расстояние внерезонаторного объектива. Оси всех пучков пересекаются в переднем фокусе внерезонаторного объектива, где расположено действительное изображение внутрирезонаторной диафрагмы.

Пиксель ПВМС установленный в фокусе линзы 3 является угловым селектором излучения. Правильный выбор размера диафрагмы 4 в центре резонатора и фокуса линзы 3 позволяет получить расходимость излучения ЗГ близкую к дифракционной. Определяющим в выборе f линзы и размера диафрагмы 4 является размер пикселя ПВМС.

Угловая расходимость выходного пучка ЗГ зависит от его диаметра DF на выходном объективе. В свою очередь DF зависит от размера пикселя модулятора d и фокуса объектива F.

Отмечается, что лазерные системы с внутрирезонаторным сканированием можно строить как системы с прямым усилением, когда излучение ЗГ усиливается в усилителе с последовательно возрастающими апертурами, так и с ОВФ излучения, когда излучение ЗГ вводится через выходные каскады.

 Схема сопряженного резонатора и-6

Рисунок 6. Схема сопряженного резонатора и преобразование положения включенного пикселя ПВМС в угловое отклонение выходного пучка внерезонаторным объективом: здесь 1, 7 – плоские зеркала резонатора; 2 – ПВМС; 3, 6 – софокусно установленные линзы резонатора; 4 – внутрирезонаторная диафрагма в центре резонатора; 5 – активный элемент; 8 – внерезонаторный объектив. Зеркала резонатора располагаются в сопряженных оптических плоскостях.

Выбор DF и F определяется поставленной задачей, например, согласованием апертуры пучка с предварительным усилителем (ПУ) линейного усилителя или с выходным усилителем мощной системы с ОВФ излучения. Мощные широкоапертурные лазерные системы, предназначенные для наведения лазерного излучения на удаленные объекты обычно имеют небольшое поле обзора (несколько десятков пикселей) и расходимость пучка близкую к дифракционной. В этих системах вследствие редуцирования диаметра пучка в выходных каскадах при сканировании пучка используется почти весь объем активной среды, а углы “качания” пучка составляют величину несколько угловых минут. Необходимы увеличенные световые апертуры промежуточных линзовых элементов. Все рассмотренные выше методы формирования лазерного пучка можно использовать и в лазерных системах с внутрирезонаторным сканированием.

Глава 2 посвящена исследованию точности управления излучением мощной лазерной системы с ОВФ с помощью внутриререзонаторного ПВМС [22].

В разделе 2.1 рассмотрены факторы, которые могут влиять на точность управления. При проведении экспериментов в лабораторных условиях существует только угловая ошибка, связанная с неточным обращением волнового фронта пучка и угловая ошибка, вызванная задержкой срабатывания ПВМС. Последняя ошибка может привести к уменьшению точности из-за механических колебаний элементов лазерной системы (в основном поворотных зеркал), вызванных воздействием сильноточного импульса накачки лазерных каскадов на несущую конструкцию.

В разделе 2.2 рассмотрена лазерная система с ОВФ излучения. Светоуправляемый ПВМС типа PROM (английская абревиатура “Pockels readout optical modulator”) на основе фоторефрактивного кристалла силиката висмута с устройством электронного управления был впервые использован в качестве внутрирезонаторного элемента для управления диаграммой направленности лазера. В ЗГ использовался активный элемент из АИГ:Nd3+. Для лучшего согласования с максимумом длины волны усилителя в части экспериментов использовался активный элемент из ИЛФ:Nd3+ ( = 1.053 мкм). Для управления работой ПВМС использовалось моноимпульсное излучение второй гармоники неодимового лазера. Задержка появления моноимпульсной генерации ЗГ относительно момента прихода управляющего светового импульса составляла 600 мкс. Длительность импульса генерации лазера равнялась 50 нс. Выходная энергия ЗГ с активным элементом из АИГ:Nd3+ не превышала 10…30 мкДж, а с активным элементом из ИЛФ:Nd3+ - 150…300 мкДж, причем в последнем случае часто наблюдались повреждения модулятора излучением.

Представлены результаты исследования модуляционной характеристики PROM при управлении излучением второй гармоники и цикл его работы. Показано, что полная модуляция достигается для длины волны 0.53 мкм при плотности сигнала ~1.3 мДж/см2.

На рисунке 7 приведена упрощенная схема экспериментальной установки для исследования точности управления пучком лазера. Излучение второй гармоники (2) неодимового лазера проходило через диафрагму Д1, установленную в фокусе длиннофокусной линзы Л1 (f =32.8 м). Отразившись от клина, пройдя поляризатор П и отразившись от зеркала З1, излучение фокусировалось сферическим зеркалом на ПВМС ЗГ. Возникающий импульс генерации ЗГ распространялся в обратном направлении: отразившись от поляризатора П и пройдя схему изоляции, он попадал в предусилитель (ПУ) с ВРМБ - зеркалом. Обращенное излучение, прошедшее через поляризатор П, поступало на вход двухпроходного усилителя с ОВФ, перед которым был установлен вентиль Фарадея и кварцевая 450 пластинка для поворота на 90° азимута поляризации выходного излучения и вывода его путем отражения от поляризатора П в направлении источника реперного излучения и схемы регистрации. Малая часть энергии пучка с выхода усилителя, отраженная от клина К1 и ослабленная зеркалом З2, поступала в схему регистрации, где направление пучка сравнивалось с направлением реперного излучения, которое попадало сюда, отразившись от ВРМБ-зеркала 1 реперного излучения (в части экспериментов использовалось излучение пучка 2, отраженное от зеркально-линзового объектива типа “кошачий глаз”). Оба пучка подсвечивали реперную сетку, расположенную в фокусе линзы Л1 на фотокатоде электронно-оптического преобразователя (ЭОП). По отклонению максимумов дальнопольного распределения пучков относительно сетки можно оценить точность управления излучением усилителя. В качестве мощного усилителя использовался многокаскадный усилитель с ОВФ [20]. В состав усилителя входило шесть каскадов с последовательно возрастающими апертурами (2 каскада 45х630 мм, 60х630 мм, 75х240 мм, 85х300 мм и ДУ с апертурой 120 мм).

 Схема экспериментальной-7

Рисунок 7. Схема экспериментальной установки

Геометрическое увеличение ВПФ и их расположение были выбраны так, чтобы обеспечить в усилительных каскадах максимальные числа Френеля. Диаметр выходного пучка был доведен до 100 мм.

Усилитель обеспечивал стабильную от вспышки к вспышке расходимость излучения близкую к дифракционной. Энергия составляла величину 410 Дж при работе от реперного источника на основной гармонике излучения. Более 72% энергии пучка сосредоточено в угловом растворе 4.610-5 рад, при д =2.6 10-5 рад. Для проведения описываемых экспериментов на выходе усилителя устанавливался телескоп Галилея, уменьшающий диаметр пучка до 50 мм для согласования с ПУ.

Невысокая лучевая прочность PROM ограничивает выходную энергию ЗГ на уровне нескольких десятков микроджоулей. Для эффективного же съема запасенной в двухпроходном усилителе энергии и обеспечения высокого качества ОВФ на его вход необходимо подавать энергию несколько сотен микроджоулей [20]. Разработанные схемы ЗГ с лучевой разгрузкой ПВМС для увеличения выходной энергии [24,25] оказались неудобными для стыковки с усилителем. Вследствие этого потребовался ПУ слабого сигнала ЗГ с дополнительным ВРМБ - зеркалом для сохранения высокого качества волнового фронта усиливаемого пучка.

Схема ПУ была разработана вместе со схемой изоляции ПУ от излучения мощного усилителя. В его состав входил усилитель 10 х 300 мм, ячейка Фарадея, электрооптический дефлектор, 450 – пластинка, ретрансляторы для передачи плоскости входного зрачка. Ослабление излучения на последних проходах достигалось за счет малой (4.5%) величины отражения пучка от поляризатора как Rp – компоненты. В связи с тем, что в схеме (рисунок 7) используется двукратное ОВФ излучения, перед проведением экспериментов по исследованию точности управления пучком следовало убедиться, что оно не внесет дополнительных ошибок.

В разделе 2.3 приведены результаты исследований точности воспроизведения направления пучка при двукратном ОВФ. Практически во всех экспериментах с ОВФ его качество определяется по доле энергии обращенной волны, идущей в угловой раствор исходной волны, или по распределению интенсивности излучения в дальнем поле. Данные методы не дают информации о том, насколько точно совпадают максимумы дальнопольных распределений реперного и обращенного пучка. При проведении экспериментов использовалась методика регистрации пучков описанная выше. Диаметр пучка равнялся 100 мм. Двухкадровый режим работы ЭОП обеспечивался подачей через разрядник с лазерным поджигом на разворачивающие пластины прямоугольного электрического импульса с длительностью 400 нс, так, чтобы его передний фронт поступал на пластины после прохождения реперного светового импульса. Таким образом, на экране ЭОП в одной вспышке наблюдалось два изображения сетки, подсвеченной реперным и обращенным пучками. По смещению пучков относительно сетки можно судить о точности воспроизведения направления реперного пучка ОВФ - волной. Результаты денситометрической обработки фотопленок с изображениями дальнопольных распределений пучков, полученных в серии экспериментов, показали, что с погрешностью до 310-6 рад направление ОВФ - пучка совпадает с направлением реперного пучка при расходимости пучков 2.610-5 рад. Предложенная методика позволяет регистрировать неполную компенсацию искажений в системах с ОВФ, в том числе уход направления пучка при наличии самовоздействия излучения, распространяющегося в нелинейной среде.

Результаты экспериментов по измерению точности управления пучка приведены в разделе 2.4. На рисунке 7 справа приведены характерные фотографии дальнопольных распределений реперного и обращенного пучков, полученные в экспериментах по управлению диаграммой направленности лазера с помощью внутрирезонаторного ПВМС. Энергия выходного пучка достигала 150 Дж и ограничивалась лучевой прочностью элементов схемы изоляции и ПУ. Обработка фотографий пучков выявила несовпадение максимумов распределений плотности энергии не превышающее величины 0.3 от дифракционной расходимости. Оно может быть вызвано влиянием механических колебаний оптических элементов между моментами записи управляющего излучения и появлением импульса излучения ЗГ.

Третья глава посвящена разработке внутрирезонаторных ПВМС на основе электрооптической керамики. На момент постановки работы, описанной в предыдущей главе, в лазерной технике использовались только ПВМС типа PROM и светоуправляемые ПВМС на основе жидких кристаллов. Их недостатки, указанные ранее, заставили искать возможность разработки более совершенных ПВМС. В качестве материала для электроуправляемых ПВМС наше внимание привлекла электрооптическая керамика ЦТСЛ (PLZT).

В разделе 3.1 приведены основные свойства электрооптической керамики ЦТСЛ. Отмечается, что PLZT был первым не монокристаллическим материалом, в котором был зарегистрирован сильный электрооптический эффект. Композиция PLZT обычно представляется системой обозначений x / (1 - y) /y, которая обозначает количества La/Zr/Ti, данные в процентах моли (то есть дробь моли, умноженную на 100). Например, система обозначений 8/65/35 представляет PLZT с химическим составом (Pb0.92La0.08) (Zr0.65Ti0.35) 0.98O3. Свойства ЦТСЛ сильно зависят от состава.

В разделе 3.2 приведены результаты исследования электрооптических свойств образцов PLZT с различной концентрацией лантана 9…9.75/65/35 с целью выбора оптимального для ПВМС. Величина напряжения U/4 измерялась путем регистрации максимума прошедшего через поляризатор излучения после его двукратного прохождения через образец после отражения от установленного сзади зеркала. Напряжения U/2 измерялись при установке образцов между скрещенными поляризаторами по максимуму прошедшего излучения. Для повышения точности измерений в статических режимах использовалась модуляция пучка с помощью вращающегося диска с отверстиями. Измерения проводились на длине волны 0.6328 мкм. При измерении величины статического напряжения на электроды модулятора подавалось постоянное напряжение. При измерении импульсных характеристик использовался электронный ключ, позволяющий подавать на образцы импульсы с амплитудой до 3 кВ.

Анализируя полученные экспериментальные результаты можно констатировать следующее. Величина статического U/4 уменьшается с уменьшением содержания лантана и увеличением толщины образца. Отношение импульсного напряжения к статическому напряжению увеличивается с уменьшением содержания лантана от 1,3 до 1,8 (и = 400 мкс). Импульсное U/4 для образца керамики состава 9.75/65/35 (U/4имп =1600 В) практически сравнивается с U/4 образца состава 9.0/65/35 (U/4имп =1520 В). Величина оптического контраста образцов с уменьшенным содержанием лантана заметно меньше, чем у образцов состава 9.75/65/35. При ступенчатом уменьшении величины приложенного напряжения для образцов с меньшим содержанием лантана наблюдается заметный гистерезис в зависимости пропускания образцов, установленных между скрещенными поляризаторами, от величины приложенного напряжения, который, впрочем, не влияет на работу в импульсном режиме. Ввиду большей доли нерегулярной части электрооптического отклика [36] керамики состава 9/65/35 при работе в импульсном режиме, плоская вершина в импульсе пропускания достигается только к концу электрического импульса с длительностью 400 мкс, а для меньших длительностей это приводит к необходимости дополнительного увеличения амплитуды импульса. Все вышеперечисленные факторы позволили выбрать для изготовления ПВМС мелкозернистую параэлектрическую керамику состава 9.75/65/35. По результатам экспериментов определены электрооптические коэффициенты образцов.



Pages:     | 1 | 2 || 4 | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.