авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 || 4 | 5 |   ...   | 7 |

Переработка литиеносного поликомпонентного гидроминерального сырья на основе его обогащения по литию

-- [ Страница 3 ] --

По мнению автора, экономические показатели технологических процессов получения товарных литиевых продуктов из нетрадиционного неконцентрируемого и слабоконцентрируемого по литию ЛГМС могут быть значительно повышены путем разработки специальных технологических приемов, позволяющих безреагентно выделять литий из ЛГМС независимо от их исходного вещественного состава в виде водных литийсодержащих растворов (первичных литиевых концентратов), хорошо концентрируемых по литию (показатель R15) любым из доступных способов, включая упаривание.

Ощутимый прогресс в этом направлении наметился в конце предыдущего столетия в результате постановки и проведения в Институте химии твердого тела и механохимии (ИХТТМ) СО РАН под руководством академика В.В. Болдырева фундаментальных исследований по синтезу и изучению свойств двойного гидроксида алюминия, лития и его анионной разновидности (ДГАЛ-Cl). Исполнителями этих работ в различное время были Н.П. Коцупало, А.С. Бергер, Л.Т. Менжерес, А.П. Немудрый, В.П. Исупов, В.Д. Белых и другие сотрудники института

В результате выполнения этого цикла работ было синтезировано двойное неорганическое соединение лития и алюминия дефектной структуры, отвечающее структурной формуле [LiAl2(OH)6]Cl·mH2O, селективно сорбирующее литий по интеркаляционному механизму из литиеносных рассолов и десорбирующее его при контакте с пресной водой с образованием раствора хлорида лития с небольшим содержанием примесей (R<15), способного концентрироваться по литию упариванием до его содержания 55 кг/м3 и выше. Таким образом, [LiAl2(OH)6]Cl·mH2O дефектной структуры с дефицитом лития в своем составе можно рассматривать как сорбент, селективный к ионам лития, а количество сорбированного лития, отнесенное к единице массы сорбента – как сорбционную ёмкость, обратимо восстанавливающуюся при обработке насыщенного сорбента водой.

Научные основы процессов синтеза [LiAl2(OH)6]Cl·mH2O дефектной структуры различными способами и результаты испытаний полученных образцов селективного сорбента на ЛГМС различного типа подробно изложены в диссертационной работе Н.П. Коцупало. По существу, данной работой впервые показана принципиальная возможность безреагентного получения литиевых концентратов с низким значением показателя R из нетрадиционного ЛГМС и переработки производимых концентратов в товарные литиевые продукты.

Однако технологические схемы и аппаратурное оформление предложенных процессов получения гранулированного [LiAl2(OH)6]Cl·mH2O (ДГАЛ-Cl) имеют существенно разный уровень научной проработки, что не позволяет сделать обоснованный выбор в пользу того или иного способа синтеза данного сорбента.

В рамках выполненных исследований по безреагентному сорбционному выделению лития из ЛГМС преимущественно изучены равновесные характеристики операций сорбции и десорбции лития гранулированым сорбентом ДГАЛ-Cl и имеющихся данных недостаточно для разработки технологии и аппаратурного оформления процесса обогащения.

Работа практически не затрагивает вопроса очистки выделяемого из ЛГМС первичного литиевого концентрата от остаточного количества примесей, хотя получение из него литиевых продуктов чистотой выше 99% предъявляет определенные требования к их содержанию в концентрате.

Предлагаемые в работе технологические схемы переработки литиевого концентрата в товарные литиевые продукты (Li2CO3, LiCl, LiOHH2O, LiF, LiBr) носят принципиальный характер и требуют существенной доработки.

Вопросы касающиеся попутного извлечения других ценных компонентов из ЛГМС изучены недостаточно глубоко, поэтому предлагаемые в работе схемы комплексной переработки ЛГМС не являются оптимальными.

В работе не нашли отражения вопросы, касающиеся использования получаемого из ЛГМС карбоната лития в качестве сырья для производства других литиевых продуктов, а также вопросы комплексной переработки нецелевого ЛГМС.

Поставленные в данной главе задачи и выбранные пути их решения предопределили последовательность проведения и объем дальнейших исследований, подробно изложенных автором в главах 2-7.

Вторая глава посвящена разработке технологии производства гранулированного сорбента ДГАЛ-Cl. С этой целью была проведена апробация различных способов синтеза порошка [LiAl2(OH)6]Cl·mH2O и его гранулирования. Химический анализ синтезированных фаз, продуктов их превращений, продуктов сорбции и десорбции на содержание алюминия, хлорид-ионов и других анионов в этом разделе и далее, проводили с использованием оксидиметрических, комплексонометрических и меркуриметрических методов анализа. Литий определяли методом атомно-абсорбционной спектрометрии на приборе ААS-1.Рентгенофазовый анализ проводили на оборудовании ИХТТМ СО РАН с использованием дифрактометров ДРОН-3 и ДРОН-4. Для микроскопических исследований использовали микроскопы МИН-8 и «Neofot».

Апробацию механохимических способов синтеза проводили, используя планетарные и центробежные мельницы конструкции ИХТТМ и ИГиГ СО АН СССР, Красноярского политехнического института (КПИ) и лопастной смеситель конструкции ЗАО «Экостар-Наутех». Удельную поверхность образцов контролировали методом БЭТ по сорбции-десорбции аргона, дисперсность частиц определяли анализаторами «Malvern», «Coulter» и «Мега», пористость гранулированных материалов – методом ртутной порометрии на оборудовании Института катализа СО РАН.

Гранулирование порошка [LiAl2(OH)6]Cl·mH2O осуществляли методом экструзии с помощью шприца в лабораторных условиях и с помощью экструдера ОАО «Катализатор» при получении опытных партий. Механическую прочность гранул на истирание ( D %) определяли стандартным методом встряхивания образца в воде на вибраторе.

Сорбционную ёмкость синтезированных образцов (Е мг.г-1) определяли в статических условиях перемешиванием литиевого рассола и навески сорбента с дефицитом лития до достижения равновесияисходя из соотношения:

, где Снач. и Скон., соответственно, начальная и конечная концентрация лития в рассоле(г/дм3); m – навеска сорбента в пересчете на сухой сорбент (г); Vр – объем рассола (дм3).

Рекуперацию метиленхлорида (МХ), используемого в качестве растворителя связующего в процессе получения гранулированного ДГАЛ-Cl, проводили на специальном лабораторном стенде, включающем: узел отгонки МХ потоком газа-носителя; узел абсорбции МХ из потока газа-носителя маслами ХФ22с-16 и ВМ-4; узел термической регенерации отработанного абсорбента; узел конденсации паров МХ. Содержание МХ в абсорбенте (а, % мас.) определяли, измеряя плотность насыщенного метиленхлоридом масла (а), исходного масла (м) и чистого МХ (мх), и используя соотношение: , а качество рекуперированного МХ оценивали по методике, изложенной в ГОСТ 9968-73.

Таблица 2.

Основные сравнительные показатели различных способов синтеза порошка ДГАЛ-С и характеристики полученных образцов

№ п/п Способ интеза Реагенты Условия синтеза Химический состав сорбента, мас. % Al(OH)3/LiCl моль/моль Sуд., м2/г Статическая емкость, мг/г Этап испытаний (масса синтезированного сорбента, m) Удельная энергоемкость, кВт·ч/кг
Т, 0С , мин. LiCl Al(OH)3 H2O теор. экспер.
1 Химическое осаждение LiCl – раствор, AlCl3 – раствор NaOH - раствор 20 менее 60 11.0 58.1 28.9 2.8 5.8 7.2 8.2 Лабораторный 6,5
2 Анодное растворение алюминия LiCl – раствор, Al – тв. 20-50 120-180 13.8 66.7 19.5 2.6 6.2 9.1 9.5 Опытно-промышленный (m – 500 кг) 30,0
3 Механохимическая активация Al(OH)3 LiCl – раствор, Al(OH)3 – тв. 60-80 60-90 16.1 65.6 18.3 2.2 5.5 10.6 10.0 Лабораторный 16,0
4 Термохимическая активация Al(OH)3 LiCl – раствор, Al(OH)3 – тв. 80-90 120 8.0 87.5 4.5 6.0 9.7 5.3 3.7 Лабораторный 22,5
5 Механохимический твердофазный одноступенчатый LiCl.H2O – тв., Al(OH)3 – тв. 20 3-5 (ПЦМ) 13.3 66.8 19.9 2.8 5.0 8.8 9.5 Укрупненный лабораторный (m – 50 кг) 14,5
6 Механохимический твердофазный двухступенчатый I LiCl – тв., Al(OH)3 – тв. II [LiAl(OH)6].Cl·mH2O – тв. 100 20 30 10 -15 в (ЦМА) 13.4 67.2 19.3 2.7 4.9 8.8 8.0 Опытно-промышленный (m – 1800 кг) 18,0


Pages:     | 1 | 2 || 4 | 5 |   ...   | 7 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.