авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 5 |

Энергосберегающая технология сольвентной деасфальтизации нефтяных остатков

-- [ Страница 2 ] --

Скорость осаждения частиц в разделителе в значительной степени зависит от дисперсного состава частиц. Показано, что дисперсный состав частиц фазы деасфальтизата формируется в подводящем (трансферном) трубопроводе в разделитель и определяется гидродинамической неустойчивостью (релей-тейлоровского типа) поверхности раздела фаз. Нами, на основе линейного анализа неустойчивости Релей-Тейлора поверхности частиц деасфальтизата по отношению к динамическому напору турбулентных пульсаций скорости в трансферном трубопроводе, получено следующее выражение для расчета характерного размера частиц dх, поступающих в разделитель:

, (4)

где - поверхностное натяжение; V- средняя скорость потока; г -плотность фазы растворителя, 0,4.

Учитывая существенно статистический характер процесса формирования дисперсного состава частиц и используя методы и результаты известной в статистической физике теории перколяции, теоретически показано и экспериментально подтверждено, что функция распределения частиц по размерам подчиняется закону Розина–Раммлера:

, (5)

где R(d) – доля объема фазы деасфальтизата, приходящаяся на капли размером большим d; dx –характерный размер капли (4); s – параметр, близкий к 1.

2.3 Расчет качественных характеристик и выхода продуктов деасфальтизации нефтяных остатков

В данной работе на основе проведенных экспериментальных исследований процесса деасфальтизации гудрона и общих теоретических предпосылок нами предлагается ряд зависимостей для определения характеристик продуктов деасфальтизации по известному значению выхода деасфальтизата (D) и оценки выхода деасфальтизата c учетом состава растворителя и качества сырья. Эти зависимости в наиболее простом виде, включающие по одному экспериментальному параметру, определяются уравнениями:

= Dn,

= 1+ D +...+ Dn. (6)

где: = Ха / Хг и = Хд / Хг — безразмерные величины; D – выход деасфальтизата; n–показатель степени, конкретный для каждого показателя качества; в качестве Х в уравнениях могут рассматриваться показатели коксуемости, содержание тяжелых металлов или асфальтенов, величины с индексом «д» относятся к деасфальтизату, индексом «а» - к асфальту, индексом «г» – к гудрону.

Влияние критических параметров растворителя на характерные для этого растворителя значения выхода и плотности деасфальтизата определяется уравнениями:

, (7)

, (8)

, (9)

где критические температура и плотность растворителя; выход и плотность деасфальтизата; наименьшая достижимая на данном растворителе плотность деасфальтизата; плотность гудрона; плотность наиболее легких фракций гудрона; k и –постоянные.

3 Исследование процесса регенерации растворителя из деасфальтизатного раствора в сверхкритических условиях

Основные закономерноти фазоразделения при регенерации растворителя из деасфальтизатного раствора в сверхкритических условиях.

Экспериментальное исследование процесса на статической лабораторной установке фазоразделения АРФ-2 позволило выявить основные закономерности влияния параметров режима проведения процесса, характеристик деасфальтизата и растворителя на степень фазоразделения.

На рис. 2 приводится диаграмма фазового состояния деасфальтизатного раствора, построенная по экспериментальным данным (табл. 1). Линия ОК соответствует линии фазового равновесия жидкость – пар для чистого пропана; линия АК проведена по экспериментальным точкам 16, в которых визуально фиксируется полное обесцвечивание верхней пропановой фазы в разделителе АРФ-2.

Таблица 1 - Составы фаз (в % масс.), полученные на лабораторной установке разделения фаз АРФ-2 для деасфальтизата, отобранного на установке 36/5 ЗАО «РНПК»

Номер опыта Условия Верхняя фаза Нижняя фаза
температура, °С давление, МПа пропан деасфаль-тизат пропан деасфаль-тизат
1 105 4,7 99,81 0,19 5,5 94,5
2 112 5,1 99,65 0,35 6,7 93,3
3 117 6,0 99,58 0,42 6,1 93,9
4 122 6,8 99,71 0,29 5,8 94,2
5 125 7,2 99,62 0,38 6,2 93,8
6 137 7,9 99,76 0,24 6,0 94,0
7 86 4,4 96,68 1,32 22,0 78,0
8 91 4,5 98,68 1,34 18,4 81,6
9 117 4,7 99,63 0,37 4,7 95,3
10 117 5,0 99,83 0,17 5,3 94,7
11 106 5,2 97,96 2,04 10,3 89,7
12 118 5,5 99,79 0,21 6,0 94,0
13 127 5,9 99,68 0,32 5,9 94,1
14 100 6,2 87,50 12,50 17,2 82,8
15 139 7,1 99,78 0,22 6,3 93,7

Слева от линии АК деасфальтизатный раствор при более низких температурах (до 85°С) представляет собой однородную темно - красную жидкость, по мере продвижения к кривой АК эта жидкость постепенно расслаивается.

При этом верхний слой постепенно изменяет окраску от темно-красного до желтого, светло-желтого цвета и затем становиться бесцветным. Одновременно снижается объем нижней фазы и далее он сохраняется на достигнутом уровне после момента обесцвечивания верхнего слоя жидкости.

Составы фаз, получаемых при сверхкритическом разделении деасфальтизатного раствора, определяются химическим и фракционным составами деасфальтизатов. В случае деасфальтизатов с относительно низким содержанием парафино-нафтеновых углеводородов - 32-35% масс. (деасфальтизаты ОАО "Уфанефтехим", ОАО "Новойл" и ЗАО «РНПК») содержание пропана в деасфальтизатной фазе не превышает 6% масс., тогда как в случае деасфальтизатов с высоким содержанием насыщенных углеводородов - 40-50% (деасфальтизаты ОАО «Ангарская нефтехимическая компания» и ООО «Лукойл-ВНП») оно составляет 12-17%.

Для верхней пропановой фазы наблюдается корреляция между содержанием в ней деасфальтизата и фракционным составом деасфальтизата. Чем меньше температура выкипания 5-10% масс. деасфальтизата, тем больше содержание масла в пропане.

На рис.3,4 представлены результаты разделения смеси пропана, бутана и деасфальтизата на лабораторной установке АРФ-2.

В экспериментах использовали пропан-бутановую смесь, содержащую 32% пропана и 68% суммы бутанов. Деасфальтизат был наработан из гудрона западно-сибирской нефти на пилотной установке деасфальтизации ЭПД-2 с применением в качестве растворителя этой же пропан-бутановой смеси. Как видно из представленных результатов, для пропан-бутанового растворителя качественный характер изменения состава фаз в сверхкритическом разделителе от режима его работы такой же, что и для пропанового растворителя.

Рис. 3 Содержание деасфальтизата в верхней фазе сверхкритического разделителя

Температура регенерации, °С: 1 – 137; 2 – 145; 3 – 153; 4 – 161.

 одержание растворителя в нижней-23

Рис. 4 Содержание растворителя в нижней фазе сверхкритического разделителя

Температура регенерации, °С: 1 – 137; 2 – 145; 3 – 153; 4 – 161.

От состава растворителя сильно зависит режим проведения сверхкритического разделения деасфальтизатного раствора. Если для пропанового растворителя оптимальный режим сверхкритической регенерации находится в области 120°С и 5,0 МПа, для пропан-бутанового растворителя качественное разделение может происходить, как это видно из рис.3,4, при температуре 140–150°С и давлении 4,2-4,5 МПа.

На рис. 3,4 сплошной линией представлены результаты расчетов состава фаз, полученные с помощью уравнений (1). Видно, что результаты термодинамических расчетов состава фаз хорошо согласуются с опытными данными, полученными в статических условиях.

Результаты исследования процесса сверхкритического фазоразделения в промышленных условиях.

Для исследования процесса сверхкритического фазоразделения в промышленных условиях были проведены в 1991-1994г.г. три серии опытно-промышленных экспериментов на установке пропановой деасфальтизации 36/5 ЗАО «РНПК» (рис. 1).

Непосредственные визуальные наблюдения за процессом фазоразделения на пилотном аппарате позволили установить общую гидродинамическую картину образующихся в разделителе потоков и их влияние на степень фазоразделения. Результаты опытов, проведенных в широком диапазоне изменения параметров режима разделения (t=100-140°C, P=4,0-6,5МПа), позволили выявить основные закономерности влияния температуры, давления, высоты уровня фаз, градиента температуры в аппарате на чистоту потока растворителя, выводимого с верха аппарата.

В частности, было установлено, что имеет место резкое увеличение выноса деасфальтизата с растворителем при превышении давления в аппарате выше некоторого порогового значения. Увеличение температуры процесса фазоразделения приводит к увеличению порогового давления. Путем применения внутренних устройств можно существенно расширить область варьирования параметров режима, в котором осуществляется удовлетворительное отделение растворителя от деасфальтизата.

Как в лабораторных, так и опытно-промышленных экспериментах прослеживается общая закономерность улучшения степени разделения деасфальтизатного раствора (уменьшение содержания масла в верхней фазе и уменьшение содержания пропана в нижней фазе) с ростом температуры и понижением давления, что согласуется с результатами термодинамических расчетов.

Влияние гидродинамических факторов хорошо прослеживается при сравнении результатов разделения, полученных в лабораторных опытах, в которых процесс фазоразделения осуществляется в статических условиях, и данных опытно-промышленных экспериментов.

В статических условиях пороговое давление Рн, выше которого содержание деасфальтизата в верхней фазе пропана больше нормы (0,5%), зависит только от температуры, т.е. Рн=Рн (Т). Например, при Т= 120 0С Рн(120 0С) = 6,0 МПа (см. табл. 1). В динамических условиях это пороговое давление Рн(Т) зависит так же от времени пребывания деасфальтизатного раствора в разделителе t и наличия в нем коагулирующих устройств. Так, для пустотелых разделителей объемами 2л (t 2 мин.) и 0,135л (t 10с) величина Рн (1200С) составляет 5,4 и 4,8 МПа, соответственно.

При наличии коагулирующих устройств в разделителе, величина Рн (Т) приближается к своему статическому значению и составляет при 120 0С 5,8 МПа. Таким образом, оснащение аппарата сверхкритического фазоразделения коагуляторами позволяет в динамическом режиме фазоразделения обеспечить достижение верхнего предела, определяемого термодинамическими условиями, степени чистоты отделяемого растворителя.

Показано, что при дополнительном подогреве нижней фазы в разделителе на 20-25°С достигается снижение содержания растворителя в деасфальтизате в 2 раза (табл. 2). При этом содержание масла в верхней фазе не превышает 0,4 %.

В 2007-2008г.г. на установке 36/2 ОАО «Уфанефтехим» после проведения реконструкции узла регенерации растворителя с переводом на сверхкритический режим работы по исходным данным ГУП «ИНХП РБ» был проведен опытно-промышленный пробег с целью определения достигнутых технико-экономических показателей ее работы. Показано, что содержание деасфальтизата в регенерированном в сверхкритическом разделителе растворителе не превышает 0,5%, а содержание растворителя в деасфальтизате ниже 10-12%. Таким образом, результаты пробега подтвердили правильность научно-технических разработок, программ расчетов и компьютерных моделей процесса регенерации растворителя при сверхкритическом режиме, использованных при разработке исходных данных на проектирование реконструкции.

Таблица 2 - Состав фаз в разделителе при дополнительном подогреве нижней фазы

№ опытов Условия разделения Состав нижней фазы, % мас
давле-ние, МПа температура, оС пропан масло
верхней фазы нижней фазы
1 5,0 110 121 10,0 90,0
2 5,0 109 129 6,3 93,7
3 5,0 111 136 4,1 95,9
4 5,0 120 125 9,2 90,8
5 5,0 120 132 5,6 94,4
6 5,0 119 140 4,8 95,2


Pages:     | 1 || 3 | 4 |   ...   | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.