авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 5 |

Разработка научных основ повышения работоспособности рабочих органов и инструментов машин и оборудования лесного комплекса

-- [ Страница 2 ] --

Основные результаты работы доложены и обсуждены на семинарах и заседаниях Ученых советов Брянского государственного технического университета, Брянской государственной инженерно-технологической академии, Московского государственного университета леса, Московского государственного технологического университета им. К.Э. Циолковского, Санкт-Петербургской государственной лесотехнической академии, ГНУ «Институт механики металлополимерных систем им. В.А.Белого» НАН Беларуси (1997 – 2005 гг); на научно-технических конференциях разного уровня: «Современные проблемы машиностроения и технический прогресс». г. Севастополь, 1996 г., «Теория, проектирование и методы расчета лесных и деревообрабатывающих машин».г.Москва, МГУЛ, 1996, «Создание ресурсосберегающих машин и технологий». г. Могилев, Машиностроительный институт, 1996 г., «Повышение эффективности технологических процессов изготовления деталей машин». г. Курган, 1999 г., «Ресурсосберегающие технологии в лесном хозяйстве, лесной и деревообрабатывающей промышленности». г. Минск, 2000 г., МНТК «Комплексная переработка древесного сырья на базе эффективных и энергосберегающих технологий». г. Архангельск, АрхГТУ, 2000 г., «Действие электромагнитных полей на пластичность и прочность материалов», г. Воронеж, ВГТУ, 2003 г., «Полимерные композиты и трибология» («Поликомтриб-2005»), г. Гомель, 2005., «BALTTRIB 2007» г. Каунас, 2007.

Публикации

Основные положения диссертации опубликованы в 52 печатных работах, в том числе 13 в изданиях, входящих в перечень ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора наук, а также в монографии, описаниях 14 изобретений, в сети Интернет ( http://bgita.ru , www.vgtu.ru)

Личный вклад автора в опубликованных работах заключается постановке и решении задач диссертации, в выявлении актуальности и формулировании научной проблемы обеспечения износостойкости инструментов и деталей машин и оборудования лесного комплекса, а также инструментальных и конструкционных материалов, использование которых предполагается в условиях идентичных рассматриваемым.

Автором предложены, разработаны и запатентованы новые конструкции рабочих органов машин и инструментов лесного комплекса и способы их доэксплуатационной обработки, обеспечивающие повышение работоспособности.

Структура и объем работы

Диссертация включает введение, 8 разделов, выводы и рекомендации, список использованных источников, 8 приложений. Работа изложена на 326 страницах машинописного текста и содержит 103 рисунка, 20 таблиц.

Список использованных источников включает 215 наименований. В приложениях приведены акты испытаний и внедрений результатов работы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, указана ее цель и задачи исследований, научная новизна, а также теоретическая и практическая значимость результатов, выносимых на защиту.

В первом разделе приводится анализ условий эксплуатации и закономерностей отказов инструментов и рабочих органов деревообрабатывающего и лесозаготовительного оборудования, принятых в качестве объектов исследования; рассматриваются особенности потери их работоспособности и предлагаются пути обеспечения стойкости.

По данным работ В.В.Амалицкого, Вит.В.Амалицкого, Б.А.Бондарева, С.Н.Иванова, В.К.Курьянова, С.М.Мазарского, И.З.Малинского, К.Ю.Эпштейна, Х.Лемана, Л.Рихтера, Д.Хойера, А.А.Филонова, Д.М.Фляте, Б.Н.Моисеева, В.Г.Лихомского и др. установлено, что при эксплуатации инструмента и ряда рабочих элементов оборудования лесного комплекса их отказы преимущественно происходят в результате различных видов разрушения и изнашивания рабочих поверхностей, а отказы проявляются в виде ухудшения режущей способности, появления недопустимого уровня вибрации; роста потребляемой мощности, снижения точности обработки.

Изнашивание в рассматриваемых условиях эксплуатации представляет сложный процесс, интенсивность и закономерности протекания которого определяются характером фрикционного взаимодействия, совокупностью характеристик и структурой функциональных поверхностных слоев.

Фундаментальные и прикладные основы поверхностного разрушения материалов при изнашивании освещены в работах Э.Д.Брауна, Ф.П.Боудена, Н.А.Буше, Д.Н.Гаркунова, И.Г.Горячевой, В.В.Гриба, Н.Б.Демкина, Ю.Н.Дроздова, Б.И.Костецкого, И.В.Крагельского, Ю.К.Машкова, Н.М.Михина, Е.А.Памфилова, Л.М.Рыбаковой, Э.В.Рыжова, А.П.Семенова, Д.Тейбора, А.В.Чичинадзе и других исследователей. Анализ этих работ позволяет отметить особую роль влияния состояния контактирующих поверхностей на величины их износа. В основном указанное состояние поверхностей характеризуют: шероховатость поверхности, уровень остаточных напряжений, микротвердость, поверхностная (усталостная) прочность и трещиностойкость, структурное и дефектное состояние используемых материалов.

Особую роль играет кристаллографическая ориентация, обусловливающая критическую величину напряжений до разрушения материала поверхностных слоев. При этом исходное состояние поверхностных слоев может обеспечивать достаточный ресурс механических свойств, что в сочетании с дополнительными эффектами упрочнения позволяет управлять сопротивляемостью процессам разрушения режущих инструментов, деталей машин и оборудования лесного комплекса. В то же время объем информации, характеризующей связь различных видов анизотропии с функциональными характеристиками изнашиваемых поверхностей недостаточен для установления связи эксплуатационных режимов (температуры, нагрузок, условий их приложения и проч.) с триботехническими свойствами конкретных изделий.

Анализ работ в этом направлении (Е.К. Ашкенази, Р.А. Адамеску, В. Бэкофен, Г. Вассерман, Я.Д. Вишняков, В.С. Смирнов, Е.М. Савицкий, Р. Кристенсен, С.Г. Лехницкий, П.Г. Микляев, Я.Б. Фридман, И.А. Одинг, Ф.И. Рузанов, Р. Хилл) показывает на необходимость оценки закономерностей влияния свойств анизотропных металлических материалов на показатели их поверхностного разрушения. Недостаточен также объем информации, раскрывающей закономерности влияния кристаллографического упорядочения в металлах на эффекты их упрочнения и возможность управления эксплуатационными свойствами изделий.

Вопросам технологического обеспечения качества поверхности уделено большое внимание в работах Н.А.Воронина, А.О.Горленко, К.И. Демьяновского, Н.Б.Демкина, Г.Н.Дубинина, А.А. Маталина, А.В.Моисеева, Е.А. Памфилова, Э.В. Рыжова, А.П.Семенова, В.П.Смоленцева, А.Г.Суслова, В.П.Федорова, М.М.Хрущова, Г.Л.Хаета, М.Х.Шоршорова и многих других.

Результаты их исследований, применимые к условиям изнашивания инструмента и деталей деревообрабатывающего оборудования, показывают, что наиболее перспективными способами их упрочнения, являются: обработка материалов концентрированными источниками энергии (лазерная и плазменная обработки, детонационные, электронно-лучевые и др. методы), а также методы гальванического формирования износостойких покрытий.

Однако известные схемы реализации этих методов не обеспечивают необходимой степени воздействия на функциональные свойства, что не позволяет использовать их потенциальные возможности при обеспечении стойкости инструментов.

Перспективными являются и упрочняющие технологии обработки изделий управляемыми электрическими и магнитными полями (Ю.В.Баранов, И.Л.Батаронов, М.Л.Бернштейн, О.О.Болотов, С.В.Вонсовский, Галей М.Т., В.Н.Пустовойт, О.А.Троицкий, В.Курц, Н.В.Котельников, Е.А.Туров, М.А.Кривоглаз, В.Н.Чижов, Л.Янг). Эти технологии позволяют формировать в изделиях необходимую остаточную намагниченность, микротвердость и шероховатость, а также создавать благоприятный фазовый состав.

Однако и они недостаточно изучены в части регламентации анизотропных состояний при индуцировании расплавов металлов и покрытий для использования их в целях повышения работоспособности рабочих режущих органов и инструментов деревообрабатывающей техники. Также ограничен объем информации о влиянии индуцирования на формирование упорядоченных кристаллографических состояний и их влияние на износ. При этом анализ работ А.Ф.Александрова, Ю.К.Круминя, Н.В.Окорокова, И.И.Новикова, Л.Л.Тира, И.А.Чернышева, Дж. Шерклифа позволяет отметить перспективность применения магнитных полей при различных видах упрочнения.

Таким образом, для повышения стойкости рассматриваемых объектов требуется решение ряда теоретических и экспериментальных задач, которое рассматривается в последующих главах.

Во втором разделе теоретически обоснованы принципы управляемого формирования благоприятной совокупности свойств функциональных поверхностей рабочих органов и инструментов оборудования лесного комплекса для достижения заданного уровня их работоспособности.

Учитывая градиентно-поверхностный характер изнашивания, представляется целесообразным формировать в зонах износа сбалансированное сочетание благоприятных уровней параметров состояния поверхности в анизотропной форме (рисунок 1). Для реализации указанных схем предлагается, используя эффекты механической или электромагнитной природы, обеспечить управление напряженным состоянием, величинами параметров шероховатости, микротвердости, а также структурным состоянием, трещиностойкостью и выносливостью.

Для этого предполагается использование регламентированной деформации, формирование кристаллографической упорядоченности в структуре поверхностных слоев, создание конверсионной структуры многофункциональных гальванических покрытий при регламентированном индуцировании.

Поскольку известно положительное влияние на стойкость рабочих органов и инструментов оборудования отрасли остаточных напряжений сжатия, которые позволяют снизить трещинообразование и проникновение в глубь инструментальных материалов поверхностно-активных веществ, целесообразно формирование их благоприятного уровня в рабочих зонах за счет направленной технологической деформации. Ее величина определяется остаточными и температурными напряжениями, коэффициентом поперечного сечения деформируемого объекта, эксплуатационной нагрузкой и температурным диапазоном деформации, лимитирующимся теплостойкостью материала.

Использование магнитных полей для формирования анизотропии механических свойств сплавов основано на магнитопластической деформации в кристаллической структуре.

 Схема обеспечения-0

Рисунок 1 - Схема обеспечения работоспособности

инструментов и рабочих органов деревообрабатывающего

и лесозаготовительного оборудования с использованием анизотропных эффектов

При этом происходит регламентированная направленность в движении точечных дефектов, объединяющиеся в группировки, искажающие симметрию решетки материала. Установлено также, что исходный уровень остаточных напряжений способен оказать влияние на уровень формируемых остаточных напряжений.

Возможность оптимизации параметров шероховатости рабочих поверхностей обусловлена влиянием магнитострикции, создающей эффект анизотропии. Учитывая сопоставимость параметров шероховатости с размерами блоков структурных составляющих допускалось, что изменения шероховатости поверхности способны отразиться на условиях фрикционного контакта при взаимодействии инструментов с древесиной.

Достигнуть качественно нового уровня состояния функциональных поверхностей изделий предлагается за счет перекристаллизации в магнитном поле в условиях термомагнитной стимуляции. Формирующаяся при этом совокупность свойств представлена разного рода текстурными формированиями. При этом установлена возможность управлять наиболее значимыми в отношении сопротивляемости различным видам разрушения материалов параметрами: фрикционной усталостью 0, коэффициентом трещиностройкости Кс, поверхностной сопротивляемостью материала микрорезанию , пределом выносливости -1, поверхностной твердостью H, параметром шероховатости и остаточным напряженным состоянием ост, hост.

Однако большая эффективность ожидается от управления кристаллографической анизотропией в изнашиваемых областях инструментов, поскольку в поликристаллических материалах, к которым относится большинство конструкционных и инструментальных сталей, целесообразно формирование многофункциональных форм анизотропии.

Возможность формирования необходимой совокупности свойств гальванических покрытий на функциональных поверхностях объектов исследований основывается на принципах многофункциональности, в которых структура покрытия представлена совокупностью послойно осаждаемых металлов. При этом в каждом слое формируется заданная кристаллографическая упорядоченность. При этом свойства наружного слоя создаются в результате трибологической конверсии.

Для реализации предложенных принципов управления состоянием поверхности рабочих органов и инструментов деревообрабатывающего и лесозаготовительного оборудования в целях повышения их работоспособности устанавливались и анализировались качественные признаки формируемых анизотропных эффектов. Для этого на основе моделирования определялись ориентационные, магнитогидродинамические и термокинетические условия их обеспечения.

В третьем разделе теоретически обоснованы условия формирования анизотропных состояний на поверхностях рабочих органов и инструментов деревообрабатывающего и лесозаготовительного оборудования в форме ориентационных моделей кристаллографического упорядочения. Их основу составили принципы сингониальной репродуктивности кристаллических состояний инструментальных материалов, характеризуемой свойством трансляционной симметрии кристаллических состояний в зернограничных порядках.

Проводимая идеализация состояла в решении прямой и обратной задач. Согласно условиям прямой задачи, задавались положения объекта подвергнутого обработке, вектора магнитной индукции В, а также тип кристаллической решетки (рисунок 2).

Рисунок 2 - Интерфейс программы расчета ориентационных эффектов для макромоделей типа «просекатель», «нож», «конический просекатель»

Определяются координаты вектора внешней нагрузки (например, силы трения) F при которых он оказывался параллельным регламентированному кристаллографическому направлению N, в котором выражен максимум заданного свойства материала.

В обратной задаче при тех же условиях предполагается наличие координат вектора внешней нагрузки и произвольного положения кристаллической решетки определенного базисного типа. Определяется положение вектора магнитной индукции В, при котором вследствие переориентации направлений легчайшего намагничивания А обеспечивается заданное соответствие положений регламентированного направления N деформации вектору F.

Влияние направленного индуцирования на закономерности формирования анизотропных состояний на основе кристаллографического упорядочения в инструментальных материалах при нагреве до температур существенно выше точки Кюри объясняется гипотезой о неравенстве температурных зависимостей намагниченности и поля анизотропии, при котором в некотором интервале температур интенсивность убывания поля анизотропии превышает интенсивность убывания намагниченности; при этом в некоторый момент времени их интенсивности совпадают, а в последующем доминирует поле анизотропии.

Установлено, что на стадии существования жидкого состояния материала влияние поля сводится к ориентированию течений вдоль магнитных силовых линий под воздействием пондеромоторной силы, или (в случае обратного эффекта) объемной электродинамической силы, создающей перепад давления в среде.

Магнитогидродинамические (МГД) приближения ориентационного эффекта представляются в виде плазменной модели на основе допущения о том, что при краткотечном воздействии высокотемпературным импульсом (например, лазерным лучом) структура расплава близка к структуре плазмы.

Установлено, что процесс кристаллографического упорядочения при охлаждении из расплава в магнитном поле характеризуется как открытая (магнитогидродинамическая) нелинейная диссипативная система, далекая от термодинамического равновесия, которой присущи нижеприведенные признаки:

  • открытость - поступление энергии извне (в данном случае энергия лазерного излучения «закачиваемая» в металл;
  • нелинейность системы - из за большой импульсно приходящей и импульсно увеличивающейся лазерной энергии (длительность импульса 2 – 8 мс) характеризуется сильной нелинейностью и диссипативностью с протеканием фазового перехода от анизотропного расплава к кристаллической структуре;
  • диссипативность системы - подтверждается тем, что в существенном интервале времени магнитные числа Рейнольдса оказываются меньше единицы.
  • удаленность от термодинамического равновесия - плотность кинетической энергии упорядоченного движения частиц оказывается меньше плотности энергии лазерного луча.

Развитие данной системы основано на принципах синергетики, выраженных в упорядочении структуры инструментального материала в жидком состоянии за счет направленности термоциркуляционного перемешивания под воздействием магнитного поля и упорядоченной кристаллизации при сильном влиянии нелинейности.

В ориентационной модели направленной перекристаллизации в магнитном поле термокинетические условия структурообразования (кристаллографического упорядочения) представляются в виде самоорганизующейся пространственно-временной диссипативной системы, отличающейся сильной нелинейностью и эволюционирующей в состояние с минимумом производства энтропии.

При нагреве и охлаждении в магнитном поле образующийся единичный полигон рассматривается в виде помещенного в жидкость твердого кубического тела, параметры плоскостей и граней которого определяются сингониальной спецификой, из материала с положительной магнитной восприимчивостью в функции напряженности поля.

Ввиду исключительной сложности прогнозирования характера гидродинамических потоков в объеме расплава, а также взаимного влияния образующихся полигонов, влияние факторов обработки на кинетический потенциал системы в текущий момент времени представляется в виде возрастающей вязкости ориентационной среды при переходе из жидкого в твердое (кристаллическое) состояние, что соответствует образованию полигонов в расплаве - первая точка бифуркации.

Ориентационные факторы представлены обобщенным термокинетическим потенциалом W (разностью температуры на границе изложницы и в объеме расплава, создающей гидродинамическое течение), понижающегося с увеличением S и t и ориентирующим плоскость по нормали к контуру Г в некоторый начальный момент времени t0 образования полигона, а также вектором магнитной индукции В, ориентирующим плоскость .



Pages:     | 1 || 3 | 4 |   ...   | 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.