авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 2 | 3 || 5 |

Нестационарные процессы деградации в щелочных аккумуляторах, закономерности и технологические рекомендации

-- [ Страница 4 ] --

В третьем разделе анализируются методы борьбы с дендритообразованием в аккумуляторах, а именно: модификация состава или конструкции электродов; покрытие электродов проводящей пленкой; создание новых сепараторов, включая комбинированные; введение в электролит различных добавок включаю поверхностноактивные; использование новых переменноточных режимов заряда. Как мне кажется, наиболее перспективным является пятый метод. Он применим к серийно выпускаемым аккумуляторам, без каких либо их изменений.

В четвертом разделе на основании макрооднородной модели пористого электрода формулируется система уравнений для теоретического анализа распределения тока по глубине пористого электрода при поляризации электрода переменным асимметричным током.

В пятом разделе предлагаются методы для экспериментального нахождения поляризационной функции исследуемого электрода с целью дальнейшего их использования в сформулированной ранее макрооднородной модели пористого электрода.

В шестом разделе решается сформулированная модель пористого электрода в активационно-омическом режиме, при поляризации электрода постоянным током для линейной и квадратичной поляризационных функций. Из решения следует, что при увеличении внешнего поляризующего тока глубина проникновения электрохимического процесса в глубь пористого электрода уменьшается. Таким образом, в случае заряда аккумуляторов при постоянном токе единственным способом улучшения распределение тока по глубине пористого электрода является уменьшение самого поляризующего тока. Это действительно приводит к улучшению распределения тока по глубине пористого электрода и к уменьшению необходимого перезаряда, а, следовательно, и к уменьшению газовыделения при заряде. Однако, это приводит также и к значительному увеличению времени заряда, что не всегда приемлемо на практике.

В седьмом разделе анализируются наиболее перспективные формы тока для заряда аккумуляторов переменным асимметричным током.

В восьмом разделе решается сформулированная модель пористого электрода в активационно-омическом режиме, при поляризации электрода переменным асимметричным током для линейной, но не симметричной поляризационной функции. В девятом разделе решается та же модель, но с учетом процессов миграции и диффузии, т.е. система уравнений вида:

при граничных условиях

j(u,c1) – поляризационная функция исследуемого электрода, c1, c2 – концентрации ионов участвующих и не участвующих в электрохимической реакции заряда аккумулятора, J – внешний поляризующий ток, u – поляризация по глубине пористого электрода, половина толщины пористого электрода.

Анализ обоих решений позволяет утверждать, что применение переменного асимметричного тока при заряде аккумуляторов позволяет добиваться любого распределения количества прошедшего электричества по глубине пористого электрода, в том числе и равномерного распределения или распределения с максимумом в центре электрода. В случае равномерного распределения количества прошедшего электричества по глубине пористого электрода, весь электрод будет заряжаться равномерно. При таком режиме заряда отпадает необходимость в перезаряде аккумуляторов. Таким образом, теоретически можно полностью исключить газовыделение при заряде аккумуляторов. Это позволит устранить одну из причин возникновения теплового разгона, а именно накопление водорода в электродах в процессе эксплуатации аккумуляторов. В случае распределения количества прошедшего электричества по глубине пористого электрода с максимумом в центре электрода, кадмий, образующий дендриты, также будет в основном осаждаться в центре пористого электрода. Это позволит исключить рост дендритов на поверхности электродов, и тем самым исключить вторую причину возникновения теплового разгона.

В десятом и одиннадцатом разделах выполнено сравнение полученных теоретических выводов с экспериментальными данными, полученными для физической модели дендрита. В качестве физической модели дендрита была взята тонкая стеклянная трубка с платиновой проволокой, заполненная раствором и поляризуемая с торца. Платиновая проволока моделирует растущий к противоэлектроду дендрит, а стеклянная трубка ячейку сепаратора через которую растет дендрит. Так как кадмий плохо растворяется в щелочном электролите, то для эксперимента был выбран близкий по свойствам цинкатный электролит. КОН плотности 1,20 г см-3 с добавлением моногидрата лития 20 г·л-1 и Na2SnO3 *H2O 0,2 г·л-1, с концентрацией цинка в нем 25 г·л-1. Это стандартный электролит цинкования, который дает плотный осадок до плотностей тока 20 мА·см-2. Для количественной оценки распределения среднего тока (количества прошедшего электричества) платиновую проволоку с осажденным на неё цинком медленно и равномерно погружали в раствор того же состава, что и раствор физической модели поры. С помощью потенциостата поддерживали постоянный положительный потенциал на платиновой проволоке (рабочем электроде), относительно цинкового электрода сравнения в том же растворе, в точке входа платиновой проволоки в раствор. При этом в ячейке протекает ток, пропорциональный линейной массе осадка в точке входа проволоки в раствор и самописец, подключенный к потенциостату, рисует распределения количества осевшего цинка по длине платиновой проволоки. Данный метод чрезвычайно чувствительный он позволяет уверенно фиксировать неоднородности осадка до 0,01 мм.

На основании сравнения теоретических расчетов и экспериментальных данных можно сделать следующие обобщения:

-Макрооднородная модель пористого электрода позволяет рассчитывать распределение с точностью до 80-90 %.

-Изменяя режимы заряда на переменном асимметричном токе, можно регулировать распределение количества прошедшего электричества по длине дендрита или глубине пористого электрода, достигая нужные оптимальные распределения.

-Полученные теоретические критерии для оценки распределения позволяют заранее устанавливать нужный режим распределения.

-Используя переменный асимметричный ток можно исключить рост дендритов и даже растворять уже образовавшиеся дендриты, перемещая растворенный метал, в глубь пористого электрода.

В двенадцатом разделе проверялась возможность использования переменного асимметричного тока для борьбы с образованием дендритов на реальном оксидно-цинковом электроде. Получены следующие результаты.

При малых плотностях тока заряда оксидно-цинкового электрода (менее 10 мА.см-2), дендриты на нем не образуются. Это соответствует теоретическим исследованиям, так как в этом случае ток более-менее равномерно распределяется по глубине пористого электрода. С возрастанием поляризующего тока глубина его проникновения уменьшается и, следовательно, большая часть поляризующего тока сосредотачивается на поверхности. Это и приводит к росту дендритов.

При средних плотностях тока заряда оксидно-цинкового электрода (10 мА.см-2<J<50 мА.см-2), на нем интенсивно образуются дендриты. Однако если использовать для заряда данного электрода переменный асимметричный ток (Tk=Ta=0,01с ), Qk/Qa=1,66, то дендриты на нем не образуются вплоть до плотностей тока заряда 50 мА.см-2.

Чтобы дендриты не образовывались как при средних плотностях тока заряда, так и при высоких необходимо соблюдать полученные ранее теоретические критерии оптимального распределения среднего тока по глубине пористого электрода.

Используя переменный асимметричный ток всегда можно растворить уже образовавшиеся дендриты.

В тринадцатом разделе проверялась возможность использования переменного асимметричного тока для борьбы с дендритами в реальном НК аккумуляторе. Получены следующие результаты.

Если заряжать НК аккумуляторы переменным асимметричным током, дающим максимум распределения количества прошедшего электричества в центре пористого электрода, то данный режим действительно приводит к растворению дендритов и устранению коротких замыканий вследствие их прорастания через сепаратор.

Заряд переменным асимметричным током НК аккумуляторов, приводит к частичному увеличению их емкости, как правило, на 10-20%.

Пятая глава состоит из двенадцати разделов и посвящена исследованию механизма теплового разгона, как одной из форм деградации аккумуляторов.

В первом разделе на основании экспериментальных данных установлен источник появления водорода в электродах аккумуляторов это разложение электролита на кислород и водород во время буферного режима работы аккумуляторов или во время их заряда. Кислород уходит из аккумулятора, а водород частично накапливается в электродах, так как при температуре 20 0С коэффициент диффузии водорода в никеле примерно 1010 раз больше, чем коэффициент диффузии кислорода.

Во втором разделе рассмотрены наиболее вероятные формы существования водорода в электродах. Чисто теоретически можно предположить, что водород накапливается или в активном веществе электродов, или в металлокерамической матрице, или в наполнителе (графит, сажа) для ламельных, намазных и прессованных электродов. Если водород накапливается в металлокерамической матрице, то здесь также возможны различные формы накопления. Во-первых, водород, возможно, просто интеркалирован в металл (-фаза металлогидрида). Во-вторых, он, возможно, образует связанное соединение (-фаза металлогидрида). В-третьих, водород, возможно, накапливается в мельчайших микродефектах кристаллической решетки (различных дислокациях и другие дефектах структуры металла) под действием очень большого капиллярного давления.

В третьем разделе выполнена серия экспериментов с целью проверки гипотезы о возможном накоплении водорода в гидроксидах никеля. Если водород просто интеркалирован в гидроксиды никеля, то при взаимодействии гидроксидов с кислотами с образованием растворимых солей внедренный водород должен будет выйти, так как гидроксиды никеля преобразуются в соль, которая переходит в раствор. Для этого можно использовать любую кислоту, которая образовывала бы с гидроксидами никеля растворимые соли, но не взаимодействовала или плохо взаимодействовала с металлической матрицей. В эксперименте использовался 22,6 % раствор серной кислоты, так как данная кислота удовлетворяет отмеченным выше требованиям. Травление оксидно-никелевых электродов выполнялось в течение 30 минут, за это время никаких изменений в никелевой матрице не происходило.

Установлено, что при травлении оксидно-никелевого электрода в серной кислоте водород вообще не выделяется. Из этого следует, что интеркалированного в гидроксид никеля водорода нет.

Потеря веса оксидно-никелевыми электродами в результате их травления в серной кислоте составила 32-36 %. Данные электроды были изготовлены на Уральском электрохимическом комбинате (УЭХК, г. Екатеринбург). По нашему запросу с завода было сообщено, что положительный электрод содержит 30-36 % гидроксидов никеля и 1-2 % гидроксидов кобальта. Полученные в опытах значения потери веса электродами, находятся в данном диапазоне. Поэтому можно утверждать, что в активном веществе оксидно-никелевого электрода нет нерастворимых в серной кислоте соединений водорода.

Таким образом, в активном веществе оксидно-никелевого электрода аккумулятора НКБН-25-У3 водород не содержится ни в виде интеркаляции, ни в виде каких-либо других соединений.

В четвертом разделе выполнена серия экспериментов с целью проверки гипотезы о накоплении водорода в металлокерамической никелевой матрице. С этой целью из оксидно-никелевого электрода предварительно был удален гидроксид никеля растворением в серной кислоте. Затем никелевую матрицу электрохимически растворяли в стандартном сульфатном растворе никелирования (рафинирования). Если водород интеркалирован в никелевую матрицу или находится в микродефектах кристаллической решетки, то он должен был бы выйти при электрохимическом растворении матрицы.

Экспериментально установлено, что при электрохимическом растворении никелевой металлокерамической матрицы оксидно-никелевого электрода водород не выделяется. При любом способе накопления водорода в металле первой стадией должна быть стадия интеркаляции водорода в металл. Однако эксперимент показал, что внедренного в кристаллическую решетку водорода нет. Это можно объяснить дегазацией оксидно-никелевого электрода в процессе хранения аккумулятора после снятия его с эксплуатации. Все исследованные в данном эксперименте аккумуляторы хранились на складе после снятия с эксплуатации не менее года.

В результате растворения металлокерамической никелевой матрицы часть электрода, погруженного в раствор, отделилась и упала на дно колбы. При этом упавшая часть имела вид исходного электрода без каких-либо изменений. Однако при извлечении из раствора и прикосновении к упавшей части, она рассыпалась на порошок в виде мелких кристаллов серого цвета с металлическим блеском. Как известно, все металлогидриды переходных элементов имеют вид светлых и темных кристаллов с металлическим блеском. Таким образом, можно предположить, что упавшая часть исследуемого электрода представляла собой агломераты кристаллов металлогидрида никеля.

Результат взвешивания порошка металлогидрида никеля показал, что он составляет, примерно, половину веса металлокерамической матрицы.

Таким образом, результаты исследований позволяют заключить, что оксидно-никелевый электрод НК аккумулятора, с длительным сроком эксплуатации состоит из трех фаз: активного вещества (гидроксида никеля), возможно металлогидрида никеля и чистого никеля, причем примерно, в равных весовых долях.

В пятом разделе выполнена серия экспериментов с целью проверки выше описанных результатов. С этой целью никелевую матрицу химически растворяли в концентрированной соляной кислоте. В результате растворения выделилось не 6 литров водорода, как этого надо было бы ожидать в случае полного растворения никеля весом около 16 грамм, а, примерно, в два раза меньше. То есть растворилось, в среднем, около восьми грамм никеля. Остальная часть матрицы представляла не чистый никель, а его соединения, нерастворимые в соляной кислоте и выпавшие в виде осадка (предположительно металлогидрид никеля). Таким образом, данные эксперименты подтверждают предыдущие результаты.

В шестом разделе выполнен эксперимент подтверждающий, что образовавшийся в результате растворения никелевой матрицы серый порошок является металлогидридом никеля. Для этого 2 г порошка поместили в керамический тигель, который затем вставили герметичную термокамеру. Затем термокамеру нагревали до температуры 1500-1600 0С. Данная температура была выбрана, для того чтобы никель, находящийся в тигле смог расплавиться. Выделяющийся при нагревании газ собирался в эластичную емкость. Анализ выделившегося газа, выполненный с помощью газоанализатора VOGA-2М, показал, что он полностью состоит из водорода. В тигле после извлечения его из термокамеры находился кусочек металлического никеля. Таким образом, порошок получившийся в результате электрохимического растворения металлокерамической никелевой матрицы состоит из двух элементов - водорода и металлического никеля, то есть он является гидридом никеля.

В седьмом разделе был выполнен расчет энергетического баланса теплового разгона. Расчет показал, что за время теплового разгона исследуемый аккумулятор получил от зарядного устройства 33,7 кДж, накопленная им электрическая энергия составляла 30 кДж, а выделилось более 218 кДж. Таким образом, ни энергия, затраченная зарядным устройством, ни накопленная в аккумуляторе электрическая энергия не являются основными источниками энергии, выделяемой в результате теплового разгона, хотя они, бесспорно, способствуют тепловому разгону, особенно на начальном этапе. Полученные результаты свидетельствуют о том, что тепловой разгон сопровождается мощной экзотермической реакцией с большим выделением тепла.

В восьмом разделе показано, что скорость выделения водорода из электродов во время теплового разгона во много раз больше скорости выделения водорода из электродов при их термическом разложении при 800 0С. Следовательно, выходу водорода из электродов во время теплового разгона способствует некоторая электрохимическая реакция сопровождающая тепловой разгон.



Pages:     | 1 |   ...   | 2 | 3 || 5 |
 





 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.